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Synthèse (en français)

Le sujet principal de cette thèse est l’étude des équations de Hamilton Jacobi posées
sur certains espaces métriques. De plus, le Hamiltonien de ces équations pourrait
présenter certaines discontinuités bien structurées.

La première partie de cette thèse est consacrée à l’étude d’une équation de Hamilton
Jacobi Bellman discontinue, définie sur une stratification de RN . Cette dernière est
le résultat d’une union d’une collection finie de sous-variétés lisses et disjointes de
RN , que l’on nomme les sous-domaines. Sur chaque sous-domaine, un Hamiltonien
continu y est défini. Cependant, le Hamiltonien global sur RN présente des disconti-
nuités lorsque l’on passe d’un sous-domaine à l’autre. On donne une interprétation
commande optimale de ce problème et on utilise les techniques de l’analyse non lisse
pour montrer que la fonction valeur est l’unique solution de viscosité de l’équation
de Hamilton Jacobi Bellman définie dans ce chapitre. L’unicité de la solution est
garantie par un principe de comparaison fort, valable pour toute sur-solution semi-
continue inférieurement et toute sous-solution semicontinue supérieurement. En ce
qui concerne l’éxistence de la solution, on utilise le principe de la programmation
dynamique vérifiée par la fonction valeur pour montrer que cette dernière est une
solution de viscosité du problème considéré. De plus, on prouve quelques résultats
de stabilité en présence de perturbations sur le Hamiltonien discontinu. Finalement,
en vertu du principe de comparaison, on montre un résultat de convergence général
pour les schémas numériques monotones qui approchent ce problème.

La deuxième partie de cette thèse est consacrée au dévelopement d’une nouvelle
notion de viscosité pour les équations de Hamilton Jacobi du premier ordre définies
sur les espaces CAT(0) propres. Un espace métrique est dit CAT(0), s’il est un espace
géodésique et si ses triangles géodésiques sont plus “minces” que les triangles du plan
Euclidien. Les espaces CAT(0) peuvent être considérés comme une généralisation
des espaces de Hilbert ou les variétés de Hadamad. Des exemples types des espaces
CAT(0) sont les espaces de Hilbert, les arbres métriques et les networks obtenus en
collant un nombre fini de demi-espaces selon leur frontière commune. On exploite la
strucutre de ces espaces pour étudier les equations de Hamilton Jacobi du premier
ordre stationnaires et dépendantes du temps. En particulier, le but du chapitre est
de retrouver les principaux résultats de la théorie de la viscosité : le principe de
comparaison et la méthode de Perron. On définit la notion de viscosité en utilisant
des fonctions test qui sont Lipschitz et qui peuvent être représentées comme une
différence de deux fonctions semiconvexes. On montre que cette notion de viscosité
coïncide avec la notion classique dévelopée sur RN en étudiant quelques exemples
d’équations classiques. De surcroît, on prouve l’existence et l’unicité de la solution
de certaines équations du type Eikonal posées sur des networks qui peuvent résulter
du collage de demi-espaces ayant différentes dimensions de Hausdorff.

La troisième partie de la thèse se focalise sur l’étude d’un problème de commande
optimale de Mayer sur l’espace des mesures Boréliennes de probabilité sur une variété



compacte M . L’étude de ce problème est motivé par certaines situations où un
planificateur central d’un système contrôlé n’a qu’une information imparfaite sur
l’état initial du système considéré. Le manque d’information est spécifique dans ce
problème. Il est décrit par une mesure de probabilité Borélienne selon laquelle l’état
initial est distribué. On définit la notion de viscosité sur cet espaces de la même
manière que dans la deuxième partie de la thèse en considérant des fonctions test qui
sont Lipschitz et qui peuvent être représentées par une différence de deux fonctions
semiconvexes. Avec ce choix de fonctions test, on étend la notion de viscosité aux
équations de Hamilton Jacobi Bellman définies sur l’espace de Wasserstein et on
établit que la fonction valeur associée au problème de commande optimale et l’unique
solution de viscosité sur l’espace de Wasserstein sur M .
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Chapter 1

Introduction

This thesis is concerned with giving a new insight in the study of first order Hamilton
Jacobi equations in certain classes of metric spaces, potentially in the presence of
structured discontinuities on the Hamiltonian.

The study of nonlinear partial differential equations has led to many new innovative
approaches, offering an interesting insight on how to solve them. An important
class of nonlinear equations is the class of first order Hamilton Jacobi equations.
Hamilton Jacobi equations were extensively studied in the literature when posed in
the Euclidean space. In full generality, the equation has the following form

H(x, v(x), Dxv) = 0, x ∈ O, (1.1)

where O is a subdomain of RN , H : O × R × RN → R is called the Hamiltonian
and v : O → R is a continuously differentiable function. In general, equation
(1.1) fails to have smooth solutions on a given domain. The most obvious way to
circumvent this problem is by relaxing the continuous differentiability requirement.
Therefore, we introduce an appropriate notion of generalized solutions, meaning
solutions that verify equation (1.1) in a certain weak sense. The present manuscript
is concerned with a contribution to the important notion of viscosity solutions. This
notion was introduced in the late 1970’s and the 1980’s by Crandall and Lions in
the papers [1, 2]. Under mild assumptions on the Hamiltonian, the definition of
viscosity solutions is the following.

Definition 1.1.

• We say that an upper semicontinuous function v : O → R is a viscosity subso-
lution to equation (1.1) at a point x ∈ O if for any continuously differentiable
function φ : O → R such that v − φ attains a local maximum at x, we have

H(x, v(x), Dxφ) ≤ 0. (1.2)

8



9

• We say that a lower semicontinuous function v : O → R is a viscosity superso-
lution to equation (1.1) at a point x ∈ O if for any continuously differentiable
function φ : O → R such that v − φ attains a local minimum at x, we have

H(x, v(x), Dxφ) ≥ 0. (1.3)

• A continuous function v : O → R is said to be a viscosity solution to equation
(1.1) if it is both a viscosity subsolution and a viscosity supersolution at every
point of O.

In the theory of linear partial differential equations, we move the derivative to the
test functions using integration by part. In the present setting the derivatives are
moved using the maximum principle. The viscosity notion has been extensively
studied and refined in the literature by many authors. We would like to refer to
Crandall and Lions [1, 2], Crandall, Ishii and Lions [3], Barles [4], Fleming and Soner
[5] and Bardi and Capuzzo-Dolcetta [6] among various manuscripts on this topic.

The theory of viscosity was developed initially to find continuous solutions of Hamil-
ton Jacobi equations of the form (1.1). However, it was extended to cover discontin-
uous frameworks by Ishii in [7] by replacing the Hamiltonian H in inequality (1.2) by
its lower semicontinuous envelope and by replacing the Hamiltonian H in inequal-
ity (1.3) by its upper semicontinuous envelope. A different notion of discontinuous
viscosity solution was introduced by Barron and Jensen [8], known as the bilateral
viscosity solution.

Another point of view for defining the notion of viscosity solution is given by nons-
mooth analysis theory. Nonsmooth analysis studies relaxed notions of differentiation
when the classical notion of continuous differentiability might not be well defined
due the lack of regularity of the functions considered. Many notions of general-
ized derivatives are developed (Dini, proximal...) and result in various concepts of
set-valued operators that allow to give a definition of weak solutions, equivalent to
Definition 1.1, of first order Hamilton Jacobi equations of the form (1.1). We refer to
the authors Clarke [9, 10], Aubin and Frankowska [11], Bardi and Capuzzo-Dolcetta
[6] and Vinter [12] for more details on nonsmooth analysis and the treatment of
Hamilton Jacobi equations through these tools. As far as the discontinuous frame-
work is concerned, Frankowska used nonsmooth analysis techniques in [13] to show
that the bilateral viscosity solution is intrinsically related to some geometric prop-
erties of the discontinuous solution.

Nonsmooth analysis techniques provide a relevant framework to study a special class
of Hamilton Jacobi equations coming from optimal control theory. The latter has
its roots in the calculus of variations, first started in the 17th century. A standard
optimal control problem refers to the problem of finding a control time function that
minimizes a certain performance criterion, under the constraint of a parametrized
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differential equation called the controlled system. The mathematical formulation of
an optimal control problem is the following. We consider the following controlled
system on RN : ẏ(s) = f(y(s), u(s)), a.e. s ∈ [t, T ],

y(t) = x,
(1.4)

where T > 0 is the final time, f : RN × U → RN is the dynamics or velocity of the
system, x ∈ RN is the initial position or initial state and t ∈ [0, T ] is the initial
time. The set U is the set of admissible control values which is assumed to be a
compact subset of some metric space. The control function u : [t, T ]→ U is a Borel
measurable function. Under mild assumptions on the dynamics, for any measurable
control function u(.), the controlled system (1.4) admits a unique absolutely con-
tinuous solution. Another point of view which is useful when nonsmooth analysis
techniques are used considers equation (1.4) as a differential inclusion:ẏ(s) ∈ F (y(s)), a.e. s ∈ [t, T ],

y(t) = x.

The set-valued map F : RN  RN is still called the set of velocities or dynamics of
the system. The relation between f and F can be easily deduced in the following
way:

F (.) := {f(., u) : u ∈ U}.
To emphasize the dependency on the initial data of trajectories solution to equation
(1.4), we sometimes denote them by y(t,x)(.). We consider the following optimal
control problem with the final cost ` : RN → R:

inf {`(y(t,x)(T )) : y(t,x)(.) is a solution of equation (1.4)}. (1.5)

In the above optimal control problem, known as theMayer problem, the performence
criterion to optimize depends only on the final cost `(.). It represents the price to
pay to arrive to the final state y(t,x)(T ). We will focus solely on this formulation in
parts of this manuscript.

Among many approaches to study the above optimal control problem, we will focus
on ones involving Hamilton Jacobi equations, which are based on the use of the
dynamic programming principle, formulated first by Bellman in the 1950’s. The
dynamic programming principle considers the mapping that associates the initial
data (t, x) to the optimal value of the optimization problem (1.5). We denote this
mapping by ϑ(t, x) and we call it the value function. More precisely,

ϑ(t, x) := inf {`(y(t,x)(T )) : y(t,x)(.) is a solution of equation (1.4)}.

The value function satisfies the following functional equation. for any h ∈ [t, T − t]
we have

ϑ(t, x) = inf {ϑ(t+ h, y(t,x)(t+ h)) : y(t,x)(.) is a solution of equation (1.4)},
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which is precisely the dynamic programming principle. It allows to break the op-
timization problem (1.5) into sub-problems that can be solved in a recursive way.
From the dynamic programming principle, if the value function (t, x) 7→ ϑ(t, x) is
continuously differentiable, then it is the solution of the following Hamilton Jacobi
Bellman equation

− ∂tv +H(x,Dxv) = 0, (t, x) ∈ O = (0, T )× RN , (1.6)

satisfying the boundary condition v(T, x) = `(x), where the function H is the Bell-
man Hamiltonian defined by

H(x, p) = sup
u∈U
{−〈p, f(x, u)〉}.

In general ϑ is not continuously differentiable. However, viscosity theory (or tools
of nonsmooth analysis) asserts that if the Bellman Hamiltonian is continuous, then
the value function is the unique solution to equation (1.6) in the sense of Definition
1.1 when it is merely continuous.

To solve optimal control problems via the Hamilton Jacobi approach, the regularity
of the value function and the Hamiltonian play a very important role. In partic-
ular, they both need to be continuous. If the dynamics f is Lipschitz continuous
with respect to the state variable x and continuous with respect to the control vari-
able u, then the Bellman Hamiltonian in equation (1.6) is Lipschitz continuous.
If furthermore, the final cost ` is Lipschitz continuous, then the value function is
continuous. When the value function is not continuous, one can use the notion of
bilateral viscosity solution to deal with this case. However, when the Hamiltonian
H is not continuous, either due to discontinuities in the dynamics f in the case of a
Bellman Hamiltonian, or more generally when the Hamiltonian in equation (1.1) is
not continuous, then the problem of finding a notion of weak solution that guaran-
tees existence and uniqueness of a solution of equations (1.1) or (1.6) is much more
complicated.

There has been a growing interest in studying Hamilton Jacobi equations with dis-
continuous Hamiltonians both from the mathematical point of view or the potential
real-world applications. In the last decades, particular Hamilton Jacobi Bellman
equations have been considered with structured discontinuities on the Hamiltonian.
Bressan and Hong [14] introduced a class of control problems known as stratified
domain control problems where the state space RN is decomposed into a finite collec-
tion of submanifolds, each of which has its own Lipschitz continuous dynamics and
its associated continuous Bellman Hamiltonian. However, while on each subman-
ifold the Hamiltonian is continuous, the global Hamiltonian defined on the whole
space presents discontinuities once one goes from one submanifold to another. This
problem was investigated by several authors in the literature. See for example Bar-
les, Briani and Chasseigne in [15, 16], Barles and Chasseigne in [17], Rao and Zidani
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in [18] and Rao, Siconolfi and Zidani in [19]. Despite the fact that the discontinuities
of the Hamiltonian are structured, the characterization of the value function of the
optimal control problem as the unique viscosity solution to an associated Hamilton
Jacobi Bellman equation of the form (1.6) presents several difficulties.

Another interesting case of discontinuous Hamilton Jacobi equations comes from
modelling problems related to traffic flow. In this problem, the state space O is a
network consisting of a finite collection of half-spaces, of the same dimension, glued
along their common boundary. The simplest example of this setting is a one di-
mensional network resulting from a finite collection of half-lines glued along their
origin point called the junction. On each half-line a continuous Hamiltonian is con-
sidered, which contains the information related to the flow of the traffic. However,
the Hamiltonian on the whole network is discontinuous at the junction point.

Two main strategies exist in the literature to define an appropriate notion of vis-
cosity that encompasses the singular nature of this problem. The first one consists
in exploiting the piecewise differential structure of the network to define a viscos-
ity notion by considering test functions that are continuously differentiable on each
half-line. See Schieborn in [20], Camilli, Marchi and Schieborn in [21], Imbert and
Monneau [22, 23], Imbert, Monneau and Zidani [24], Achdou, Camilli, Cutrì and
Tchou [25], Achdou and Tchou [26] and Lions and Souganidis [27] for a detailed
discussion on this line of thought. The second approach takes a considerable con-
ceptual jump by considering the network as a metric space and aims at developing
a theory of viscosity solutions in a more general class of metric spaces, that includes
the case of the network.

The theory of viscosity was developed in more general spaces shortly after its first
appearance in the Euclidean space. It was first extended to Banach spaces by
Crandall and Lions in the series of papers [28, 29, 30, 31]. As far as metric spaces are
concerned, the papers by Giga, Hamamuki and Nakayasu [32], Gangbo and Święch
[33] and Ambrosio and Feng [34] treat special cases of Hamilton Jacobi equations
defined in general metric spaces. The question of defining and treating more general
Hamilton Jacobi equations in a general metric space remains widely open in the
current state of the literature.

Another particular class of metric spaces that gained a substantial amount of at-
tention in the last few years is the space of probability measures over a base space,
typically over the Euclidean space or a Riemannian manifold. Hamilton Jacobi
equations in the space of probability measures arise in the modelling of systems
consisting of a large number of interacting agents or particles in motion, considered
to be indistinguishable from one another. If the total number of particles stays con-
stant at all times, then a convenient way to model this problem is by considering
the number of particules to be infinitely large and by looking at the system as one
normalized density evolving through time. The space of probability measures in
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this setting is often endowed with the Wasserstein distance coming from optimal
transport theory [35]. The various viscosity notions developed in [32, 33, 34] for
Hamilton Jacobi equations defined in a general metric space do not cover a wide
range of Hamilton Jacobi equations defined in the space of probability measures.
This led to a further investigation to define a suitable notion of viscosity solution in
this space.

When the space of probability measures is equipped with the Wasserstein distance,
then, roughly speaking, it has a structure resembling that of an infinite dimen-
sional Riemannian manifold. This fact has led to the development of various no-
tions of viscosity relying on both nonsmooth analysis tools and viscosity techniques.
See Marigonda and Quincampoix [36], Marigonda and Cardaliaguet [37], Jimenez,
Marigonda and Quincampoix [38], Cardaliaguet, Delarue, Lasry and Lions in [39]
and Gangbo and Tudorascu [40]. Yet, viscosity theory in the space of probability
measures is still a very active area of research. Many challenging questions regarding
well posedness of Hamilton Jacobi equations defined in this space are still open.

In this thesis, we give a new insight on these challenging problems by extending the
notion of viscosity solutions to more general classes of metric spaces with Hamil-
tonians that can potentially present some structured discontinuities. The thesis is
organized into three independent chapters. In Chapter 2, we study well-posedness of
Hamilton Jacobi equations coming from stratified domain optimal control problems.
We define a new notion of viscosity that encodes the discontinuous nature of the
Hamiltonian and we prove that the value function is the unique viscosity solution of
the problem using mainly tools of nonsmooth analysis. In Chapter 3, we develop a
new viscosity notion for first order Hamilton Jacobi equations defined in a class of
metric spaces called spaces of curvature not greater than 0 in the sense of Alexan-
drov. This class of metric spaces includes Euclidean spaces and networks that can be
resulting from gluing half-spaces of different Hausdorff dimension. Chapter 4 aims
at introducing a new notion of viscosity in the space of Borel probability measures
over a compact Riemannian manifold by studying a Hamilton Jacobi Bellman equa-
tion associated to an optimal control problem posed in this space. In the remainder
of this introduction, we give a summary of the main contributions presented in the
chapters of this thesis.

Chapter 2 : A general comparison principle for Hamilton Jacobi Bellman
equations in stratified domains

In this chapter, we are concerned with a Hamilton Jacobi Bellman equation coming
from a stratified optimal control problem in RN , introduced by Bressan and Hong
in [14]. We consider n open setsMi of RN such that

RN = ∪ni=1Mi, Mi ∩Mj = ∅, for i 6= j.

We suppose that the interface Λ := RN \ ∪ni=1Mi separating the open setsMi is in
the form of a finite and disjoint union of lower dimensional embedded submanifolds.
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On eachMi, we define a continuous Bellman Hamilltonian Hi and we consider the
following Hamilton Jacobi equation−∂tv(t, x) +Hi(x, ∂xv(t, x)) = 0, for (t, x) ∈ (0, T )×Mi,

v(T, x) = ψ(x),
(1.7)

where ψ : RN → R is the final cost supposed to be Lipschitz and bounded. Note
that we choose to adopt the notation ∂xv instead of Dxv in this chapter since we
are going to use mainly nonsmooth analysis techniques. The Hamiltonians Hi are
of the form

Hi(x, p) = sup
ν∈Fi(x)

{−〈p, ν〉},

where Fi(.) is a set-valued map representing the set of velocities onMi. Due to the
singular nature of our problem, one cannot expect to find a continuous Hamiltonian
H defined in all RN , such that its restriction to eachMi coincides with Hi. The goal
of this chapter is to define the HamiltonianH on the interface Λ in order to guarantee
well-posedness of the Hamilton Jacobi equation (1.7) in a suitable viscosity sense
that takes into account the discontinuous nature of H.

When the Hamiltonian H is continuous, nonsmooth analysis tools provide a geo-
metric interpretation of the definition of viscosity supersolutions and subsolutions,
known as weak and strong invariance properties. It states that a function v is a vis-
cosity supersolution if and only only if there exists at least one trajectory, solution
of the controlled system associated to H, starting from a point of the epigraph of
v that stays confined in the epigraph. In this case, we say that the epigraph of v
is weakly invariant. Similarly, a function v is a viscosity subsolution if and only if
every trajectory that starts from a point in the hypograph of v stays confined in the
hypograph. We say that the hypograph of v is strongly invariant. The invariance
principles are powerful nonsmooth analysis techniques that allow to deduce a key re-
sult in viscosity theory called the comparison principle, which states that any upper
semicontinuous subsolution must lie below any lower semicontinuous supersolution
if their boundary conditions do. Comparison results guarantee uniqueness of the
viscosity solution if it exists.

For the stratified case, the Hamiltonian is necessarily discontinuous and the picture
is less clear. Barnard and Wolenski tried to fill the gap in [41] by studying weak
and strong invariance properties in the stratified setting. However, their statement
regarding the strong invariance property needed further investigation. This is due to
the fact that their choice regarding the sub/super- differentials, or equivalently the
choice of the test functions, in their definition of viscosity solution, did not take into
account the singular nature of the problem (see Chapter 2 for a detailed discussion
on this fact). In this chapter, we will prove the invariance principles in the present
stratified setting.



15

Defining a good notion of viscosity when the Hamiltonian H is discontinuous is a
difficult task. As mentioned above, one of the key results that the new notion of vis-
cosity needs to provide is a comparison principle between any upper semicontinuous
subsolution and any lower semicontinuous supersolution. A comparison principle
was obtained by Camilli and Siconolfi in [42] in the case where the Hamiltonian
H is measurable with respect to the state variable, under a restrictive assumption
called the “transversality condition” on the Hamiltonian. The latter implies that
the behavior of the Hamiltonian on the interface could be ignored. Barles and
Chasseigne considered a more general setting than the one considered in the present
chapter [17]. The authors used the Ishii’s extension on the interface and provided
a very thorough analysis on the notion of viscosity solution of a stratified system.
Furthermore, different conditions under which the comparison principle is satisfied
have been investigated in their monograph [43]. Rao and Zidani [18] studied the
same stratified domain optimal control problem as in the present setting. They
used nonsmooth analysis techniques to prove a comparison principle that holds for
any lower semicontinuous supersolution and any upper somicontinuous subsolution
that is Lipschitz continuous on the interface. Furthermore, in order to define the
Hamiltonian H on the interface, they gave an optimal control interpretation of the
above Hamilton Jacobi equation (1.7) by considering the notion of essential dynam-
ics taken from [41]. The essential dynamics represent the velocities that are actually
taken by the trajectories of the stratified controlled system. However, the lack of
an appropriate strong invariance result was the limiting factor to prove a compari-
son principle that holds for any lower semicontinuous supersolution and any upper
semicontinuous subsolution in the paper by Rao and Zidani [18].

Concerning numerical schemes approximating this problem, to the best of our knowl-
edge, there are no results of convergence of numerical schemes in the present setting.
The only known results of convergence of finite differences numerical schemes are
proved in the setting of a one dimensional network due to Guérand and Koumaiha
in [44], Carlini, Festa and Forcadel [45] and Morfe in [46].

The novelties of this chapter are the following. We will first define a Hamiltonian on
the interface Λ, denoted by HΛ, and consider the following Hamilton Jacobi Bellman
equation: 

−∂tu(t, x) +Hi(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )×Mi,
−∂tu(t, x) +HΛ(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )× Λ,
u(T, x) = ψ(x) for x ∈ RN .

The Hamiltonian HΛ defined on the interface Λ has the form of a maximum of a
finite number of lower semicontinuous essential Hamiltonians obtained along the
same lines of [41]. Then, we will define a new notion of viscosity that encompasses
the singular nature of this problem. This new definition of viscosity will allow us
to prove a strong comparison principle, valid for any lower semicontinuous superso-
lution and any upper semicontinuous subsolutions. The proof of the latter is based
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on nonsmooth analysis techniques. In particular, we introduce an optimal control
problem whose controlled system is defined via the essential dynamics and whose
value function will be the solution to the above Hamilton Jacobi Bellman equation.
Furthermore, we will prove the weak and the strong invariance principles in this
stratified setting. We stress on the fact that the invariance principles are novelties
of this chapter.

From the strong comparison principle, we will prove some stability results for the
above Hamilton Jacobi Bellman equation in the presence of perturbations on the
Hamiltonians Hi and HΛ. Finally, we will extend the classical result due to Barles
and Souganidis [47] regarding convergence of monotone numerical schemes to the
stratified setting.

We would like to point out that the interface condition considered in this work is
different from the multiple interface conditions presented in the book by Barles and
Chasseigne [43]. Moreover, we use mainly nonsmooth analysis techniques whereas
in Barles and Chasseigne’s book, the focus is more on viscosity techniques. We will
discuss a comparison between the results of this chapter and some of the settings
considered in [43].

Chapter 3 : Viscosity solutions of Hamilton Jacobi equations in proper
CAT(0) spaces

In this chapter, we combine techniques coming from viscosity theory with techniques
related to metric geometry to develop a first order viscosity theory in proper geodesic
metric spaces of curvature not greater than 0 in the sense of Alexandrov.

Metric geometry, at its core, is a branch of mathematics that aims to study geo-
metric notions such as length, angles and curvature using purely metric distances.
The fundamental object of study in metric geometry is the concept of geodesic
spaces. A geodesic space is a metric space with the property that distances can
be understood as lengths of paths between the points of the space. An important
class of geodesic spaces of particular importance in metric geometry are spaces with
curvature either bounded from above or bounded from below, studied mainly by
the Russian school founded by Alexandrov in the last century. In this chapter, we
are interested in geodesic spaces with curvature not greater than 0. These metric
spaces can be regarded as a generalization of Riemannian manifolds of nonpositive
sectional curvature. Their study started with the work of Hadamard and Cartan on
hyperbolic spaces in the beginning of the last century. The notion of geodesic spaces
of curvature not greater than 0 can be traced back to the work of Alexandrov pub-
lished in Russian in 1951. He later summarized his ideas in the paper [48]. Actually,
Alexandrov gave a meanning of what it means for a geodesic space to have curvature
bounded from above by any real number κ ∈ R. Alexandrov’s work was popularized
by the work of Gromov in the last decades. Notably, in his lectures at Collège de
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France in 1981 [49], Gromov explained the main properties of the global geometry
of manifolds of nonpositive sectional curvature based on Alexandrov’s definition of
curvature not greater than 0, which Gromov named the CAT(0) inequality. Note
that the initials “C”, “A” and “T” stand for Cartan, Alexandrov and Toponogov,
each of whom contributed to the understanding of curvature via inequalities involv-
ing distances. Examples of CAT(0) spaces include Hilbert spaces, simply connected
Riemannian manifolds with nonpositive sectional curvature and networks. For more
on the topic of CAT(0) spaces, we refer to the books by Bridson and Haefliger [50],
Alexander, Kapovitch and Petrunin [51], D. Burago, Y. Burago and Ivanov [52] and
Bacák [53].

CAT(0) spaces enjoy a rigid structure that makes possible a first order calculus
on them. Indeed, even though CAT(0) spaces are not manifolds in general, they
resemble manifolds of nonpositive sectional curvature. For example, the CAT(0)
inequality allows one to define the notion of tangent cone at every point, which is
the metric analogue of the tangent space in differential geometry or the Bouligand
tangent cone in convex analysis. Furthermore, the CAT(0) inequality implies that
the distance function is geodesically convex (or simply convex in this manuscript)
and the squared distance function is semiconvex. Real valued semiconvex functions
and semiconcave functions, or more generally functions that could be represented
as a difference of two semiconvex functions, called DC functions, exist in abundance
in CAT(0) spaces. If furthermore they are Lipschitz, then they admit directional
derivatives along geodesics at every point. These facts are exploited to define a
notion of differential of a DC function.

DC functions were used in an unpublished paper by Perelman [54] to show the
existence of a DC atlas in a dense set (with respect to the Hausdorff measure) of a
finite dimensional locally compact geodesic space of curvature bounded from below
in the sense of Alexandrov. Furthermore, he proved that DC functions admit a
second order expansion at almost every point in this space. Recently, Perelman’s
results were extended by Ambrosio and Bertrand in [55]. DC functions are also used
in the theory of gradient flows in geodesic spaces with one curvature bound in the
sense of Alexandrov. See the manuscripts by Petrunin [56], Lytchak [57], Ohta [58],
Ohta and Pàlfia [59] Ambrosio, Gigli and Savaré [60] and Mayer [61] for more details
on the subject.

Recall that viscosity theory was first extended to Banach spaces by Crandall and
Lions in a series of papers [28, 29, 30, 31] in the 1980s. The extension to more gen-
eral classes of metric spaces is motivated by numerous applications involving traffic
management issues, data transmission, geometric optics, wave front propagation,
etc. Giga, Hamamuki and Nakayasu [32] treat the case of Hamilton Jacobi equa-
tions of Eikonal type defined in a general metric space. Gangbo and Święch [33]
and Ambrosio and Feng [34] treat a class of Hamilton Jacobi equations on complete
geodesic metric spaces where the Hamiltonian depends on the derivative of the un-
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known function only through its local Lipschitz constant, also known as the local
slope. The generalization of the viscosity notion to abstract metric spaces for a more
general class of Hamilton Jacobi equations is far from being straightforward. This is
due to the lack of structure in these spaces. In particular, the notions of directions
of curves, differential of functions and scalar product are not well defined.

Several contributions have restricted their analysis to special cases of metric spaces
that have additional structural properties. For instance, Schieborn in [20] and
Camilli, Marchi and Schieborn in [21] studied the Eikonal equation in a special
case of metric spaces called ramified spaces. The latter can be visualized as a lo-
cally finite collection of manifolds (branches) of the same dimension, glued together
along parts of their boundary (the junction). The simplest example of such setting
is a one dimensional network, obtained by gluing a finite collection of half lines
along their origin. The approach used in their setting was to exploit the differen-
tial structure that each branch enjoys, to define the Hamiltonian and the notion of
viscosity. This approach was considered by Imbert and Monneau [22, 23], Imbert,
Monneau and Zidani [24], Achdou and Tchou [26] and Lions and Souganidis [27] to
study more general Hamilton Jacobi equations on networks. On each branch, they
considered a Hamiltonian that is supposed to be continuous, yet the Hamiltonian
on the whole network is discontinuous at the junction. They proved well-posedness
of the problem by taking test functions that are continuously differentiable on each
branch. Although this approach allows to treat more general Hamilton Jacobi equa-
tions, it relies heavily on the piecewise differential structure of the underlying space,
which makes it inconvenient for other classes of metric spaces.

In this chapter, we aim at developing a novel notion of viscosity solution of first
order Hamilton Jacobi equations defined in CAT(0) spaces. To do so, we are going
to use the metric structure of CAT(0) spaces to define the Hamiltonian and we are
going to use Lipschitz and DC functions to define the viscosity notion. The notion
of viscosity we propose in this chapter in CAT(0) spaces offers many advantages
with respect to the two main lanes that exist in the literature. Indeed, compared
to [33, 34, 32], we can treat a more general class of Hamilton Jacobi equations.
Furthermore, compared to [20, 21, 22, 23, 24, 27] we can treat Hamilton Jacobi
equations on structures more complex than networks. Let us summarize the results
of this chapter.

Let (X, d) be a proper CAT(0) space, i.e. a CAT(0) space whose closed bounded
sets are compact. We propose to study the following boundary value problemH(v(x), x,Dxv) = 0, x ∈ Ω,

v(x) = `(x), x ∈ ∂Ω,
(1.8)

and its time dependent variant∂tv +H(x,Dxv) = 0, ∀ (t, x) ∈ (0,+∞)×X,
v(0, x) = `(x), x ∈ X,

(1.9)
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where Ω is an open subset ofX and ` : X → R is a continuous and bounded function.
The expression Dxv is the differential of v at x, well defined if v is a Lipschitz and
DC function. The function H is the Hamiltonian depending on v(x) ∈ R, x ∈ X
and the differential function of v at x.

The main novelties of this chapter are the following. First, we give a precise def-
inition of the Hamilton Jacobi equations (1.8) and (1.9) and the exact hypotheses
required for the Hamiltonians in this setting. Moreover, we define the notion of vis-
cosity adopted in this chapter using Lipschitz and DC functions. Then we prove the
comparison principle for the stationary and the time dependent cases. The proof of
the comparison principles is done in the exact same way as in the classical theory of
viscosity. It relies essentially on the variable doubling technique using the squared
distance function. Moreover, we prove existence of the solution by virtue of Perron’s
method in a similar manner as in the classical theory of viscosity. Finally, we give
several examples covered by this setting which shows its degree of generality. In
particular, we show that this setting coincides with the classical setting in RN by
treating several examples of Hamilton Jacobi equations defined in X = RN . The
major difference between the current setting and the classical setting in RN is that
we use different sets of test functions. Moreover, we give several examples of Eikonal
type equations defined on proper CAT(0) spaces of the form:
• the proper CAT(0) space obtained by gluing together three half-lines of R2

X1 := [0,+∞)e1,

X2 := [0,+∞)e2,

X3 := [0,+∞)e3,

along the origin point A = {0};

A

X1X2

X3

e1e2

e3

Figure 1.1: The space obtained by gluing X1, X2 and X3 along A.

• the proper CAT(0) space obtained by gluing together the setsX1 := {(x1, x2, x3) ∈ R3 : x3 = 0},
X2 := {(x1, x2, x3) ∈ R3 : x1 = x2 = 0},
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along the origin point A = {0};

•
X1

X2

A

Figure 1.2: The space obtained by gluing X1 and X2 along A.

• the CAT(0) space obtained by gluing together the setsX1 := {(x1, x2, x3) ∈ R3 : x3 = 0},
X2 := {(x1, x2, x3) ∈ R3 : x1 = x2 = 0, x3 ≥ 0},

along the origin point A = {0};

•
X1

X2

A

Figure 1.3: The space obtained by gluing X1 and X2 along A.

Finally, we would like to mention that in this chapter, we chose clarity over gener-
ality. Indeed, all the proofs given in this chapter are local in nature, hence they can
be extended to any proper CAT(κ) space for any κ ∈ R. Furthermore, in the next
chapter we will explore the possibility of transposing the notion of viscosity defined
in this chapter to the specific example of a Hamilton Jacobi Bellman equation de-
fined on Wasserstein spaces over compact Riemannian manifolds, which could be
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regarded as a geodesic space with curvature bounded from below in the sense of
Alexandrov.

Chapter 4 : Deterministic optimal control problem in Riemannian man-
ifolds under probability knowledge of the initial condition

In this chapter, we introduce a novel notion of viscosity solution to study well-
posedness of a Hamilton Jacobi Bellman equation associated to an optimal control
problem defined on the Wasserstein space over a compact Riemannian manifold
equipped with the Wasserstein distance of order 2.

For a compact Riemannian manifold (M,d) equipped with its Riemannian distance,
the Wasserstein space over it is the space of distributions of mass over M , whose
total mass is constant for all distributions. By convention, we normalize with the
total mass and the Wasserstein space can be identified with the space of probability
measures overM and denoted by P(M). It is endowed with the Wasserstein distance
of order 2. The Wasserstein distance dW (µ1, µ2) between two measures µ1 and
µ2 represents the minimum cost to move the total mass from one configuration
represented by µ1 to the configuration represented by µ2, where the unit cost to
move a unit mass from a point x1 ∈M to the point x2 ∈M is d2(x1, x2).

There has been an increasing interest in developing an optimal control and viscos-
ity theories in Wasserstein spaces in the last decade. It stems from the numerous
potential applications involving modelling certain specific uncertainties of an oth-
erwise deterministic system or the modelling the collective behaviour of a large
number of interacting agents supposed to be indistinguishable from one another.
The potential real-world applications include modelling pedestrian motion, traffic
flow, autonomous vehicle motion, aggregation phenomena in biology and problems
related to fluid mechanics.

At the individual level, the behavior of each agent is dictated not only by local
interactions between the agents but also by the non local interactions that depend
on the distribution of all agents. When the number of agents is assumed to be very
large, the complexity of the system grows extremely fast. To model a multi-agent
system on M , a macroscopic point of view is considered. It consists in taking an
infinite dimensional approximation of the problem and in considering the collection
of the agents as a density that evolves in time. Furthermore, if the number of agents
is constant at all times, then we can normalize the density and assume that the
density of the system has a mass equal to 1 at all times. Hence, the evolution of the
multi-agent system, seen as normalized spatial density in M is described by a curve
t 7→ µt ∈ P(M) where µt represents the spatial density of the multi-agent system
at a given time t ≥ 0. The conservation of the mass along the trajectory t 7→ µt is
described by the continuity equation

∂tµt + div(wtµt) = 0,
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where wt(.) is a time-dependent Borel vector field, and the equation is understood
in the sense of distributions.

In this chapter, we propose to study a simple model of multi-agent systems, where
the non local interactions between the agents are not considered. This problem can
be interpreted as a deterministic controlled system with imperfect information on the
initial condition, i.e. the initial condition is not known precisely by the controller,
but they only know that the initial condition follows a probability distribution µ0 ∈
P(M). More precisely, consider the following controlled equation:ẏ(t) = f(y(t), u(t)), t ∈ [t0, T ],

y(t0) = x0, u(t) ∈ U,
(1.10)

where the set U is the set of admissible control values which is assumed to be a
compact subset of some metric space. The dynamics f : M ×U → TM , is assumed
to be Lipschitz with respect to the first variable, continuous with respect to the
second variable and the following set of functions

{x 7→ f(x, u) : u ∈ U}

is convex. The initial position is x0 ∈ M and the initial time is t0 ∈ [0, T ]. The
control function u(.) ⊂ U is a Borel measurable function u : [t0, T ]→ U . The main
feature of this problem is that the initial position x0 is not perfectly known, but
rather distributed along the probability measure µ0. Notice that since f(., u(t)) is
Lipschitz continuous and bounded, the evolution curve of the uncertainty, t 7→ µt
starting from µ0, is the unique solution to the equation∂tµt + div(f(., u(t))µt) = 0, t ∈ (t0, T ),

µt0 = µ0,

in the distributional sense. The measures µt are obtained by the pushforward of
µ0 by the flow at time t of the controlled equation (1.10). The controller aims at
minimizing the following final cost:

L(µ) =
ˆ
`(y)dµ(y),

where ` : M → R is a Lipschitz function. The quantity L(µT ) represents the
expectation of the deterministic final cost with respect to the measure µT . To this
optimal control problem, we associate the following value function:

ϑ(t0, µ0) = inf
u(.)∈U

L(µT ).

The first main goal of this chapter is to study the properties and the regularity of
the value function. In particular, we will show that the value function is Lipschitz
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continuous with respect to both variables and that it verifies the dynamic program-
ming principle. The second goal of the chapter is to prove that the value function
can be characterized as the unique viscosity solution of a suitable Hamilton Jacobi
Bellman equation of the form∂tv +H(µ,Dµv) = 0, (t, µ) ∈ [0, T )× P2(M),

v(T, µ) = L(µ),
(1.11)

in the Wasserstein space P(M).

A similar problem was studied by Cardaliaguet and Quincampoix in [37] in the
context of differential games and by Marigonda and Quincampoix in [36] for Mayer
optimal control problems. A more general optimal control problem of multi-agent
systems, where the non local interactions are taken into account by making the dy-
namics f depend also on the measure variable was considered by Jimenez, Marigonda
and Quincampoix [38]. In [37, 38, 36] the authors proved that value function is Lip-
schitz continuous and it is a viscosity solution to a Hamilton Jacobi equation in a
certain weak sense using techniques coming from nonsmooth analysis applied to the
Wasserstein space over the Euclidean space.

Regarding the viscosity notion, the study of Hamilton Jacobi equations in Wasser-
stein spaces over the Euclidean space is based on two different strategies. The first
strategy consists in considering a suitable notion of sub/super- differentials to de-
fine the notion of viscosity, see for example Cardaliaguet and Quincampoix, [37] and
Jimenez, Marigonda and Quincampoix [62]. The second strategy is based on the
so-called Lions calculus introduced by Lions in 2006 at Collège de France [63]. The
idea of this line of thought is to “lift” the Hamilton Jacobi equation defined in the
Wasserstein space to a Hamilton Jacobi equation defined in a Hilbert space. One
then uses the viscosity theory techniques developed in Hilbert spaces to define a suit-
able notion of viscosity in the Wasserstein space, in an extrinsic way, through this
lift. For more details we refer to the paper by Gangbo and Tudorascu [40]. Both
of these notions were proven to be equivalent in the recent preprint by Jimenez,
Marigonda and Quincampoix [62] in the case of certain Hamilton Jacobi equations
coming from modelling multi-agent systems. In this chapter, our approach is differ-
ent. We propose a different notion of viscosity solution, based on exploiting tools of
metric geometry applied to the Wasserstein space P(M). In particular, We define
the viscosity notion by considering test functions that are Lipschitz and DC in the
same manner as in the previous chapter.

The Wasserstein space (P(M), dW ) is a geodesic space. This was first noticed by
McCann in his PhD thesis [64] in the case of the Wasserstein space over the Eu-
clidean space. He used geodesics of the Wasserstein space to prove uniqueness of
minimizers of certain functions that are geodesically convex (or simply convex in
this manuscript). This property is also known in the literature by the name of
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displacement convexity. Later, Otto introduced a formal Riemannian structure on
the Wasserstein space over the Euclidean space on a purely heuristic level in or-
der to prove that the heat equation in the Euclidean space could be interpreted
as a gradient flow in the Wasserstein space over it [65]. Furthermore, he obtained
some formal computations that indicated that the Wasserstein space possesses a
nonnegative curvature. This was made precise by several authors.

If M has nonnegative sectional curvature, Lott and Villani [66] and Sturm [67]
showed that the Wasserstein space over it P(M) has nonnegative curvature in the
sense of Alexandrov. More generally, if M is any compact Riemannian manifold,
Ohta showed in [58] that P(M) has a “2-uniform concavity” sturucture, which can
be regarded as a generalization of curvature bounded from below in the sense of
Alexandrov. Moreover, in [68] Gigli showed that the notion of tangent cone in
the sense of metric geometry is well defined at every point of P(M) and gave an
explicit isometric representative of it. Furthemore, he showed that the squared
Wasserstein distance is Lipschitz and semiconcave and gave an explicit expression
of its directional derivatives at every point.

We will exploit all these results concerning the geometry of P(M) in this chapter. In
particular, we use the tangent cone to give a precise definition of the Hamiltonian we
are going to work with. We define a notion of a differential for a Lipschitz and DC
function in the same manner as in the previous chapter so that the notation Dµv in
equation (1.11) will become precise. Moreover, we use the explicit expression of the
differential of the squared Wasserstein distance to prove a comparison principle by
means of the variable doubling technique. Finally, we prove that the value function
is the unique solution of a Hamilton Jacobi Bellman equation of the form (1.11).

The results of this chapter are summarized as following. First, we show that the
value function of the optimal control problem defined above is Lipschitz continuous
with respect to both variables. Then, we show that it verifies the dynamic pro-
gramming principle in same manner as in the classical case. Furthermore, we prove
that the value function is the unique viscosity solution of a suitable Hamilton Ja-
cobi Bellman equation defined in P(M). The viscosity notion is defined by means
of test functions that are Lipschitz and DC in P(M). The uniqueness of the solu-
tion is established by proving a comparison principle valid for any bounded upper
semicontinuous subsolution and any bounded lower semicontinuous supersolution.
Existence of the solution is proved by means of the dynamic programming principle
verified by the value function.

The results of this work will be the subject of the following publications:
1. F. Jean, O. Jerhaoui and H. Zidani. A Mayer optimal control problem on

Wasserstein spaces over Riemannian manifolds. Proceedings of the 18th IFAC
Workshop on Control Applications of Optimization. Accepted.
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2. O. Jerhaoui and H. Zidani. A general comparison principle for Hamilton Jacobi
Bellman equations on stratified domains. Submitted.

3. F. Jean, O. Jerhaoui and H. Zidani. Deterministic optimal control problem
in Riemannian manifolds under probability knowledge of the initial condition.
Submitted.

4. O. Jerhaoui and H. Zidani. Viscosity solutions of Hamilton Jacobi equations
in proper CAT(0) spaces, In preparation.
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2.1 Introduction

In this chapter, we study well-posedness of a system of Hamilton Jacobi Bellman
equations (HJB in short) defined on a stratification of RN . This problem was first
indroduced in [14] and [41]. A stratification of RN is a finite collection of disjoint
open sets of RN denoted (Mi)i=1,...,n such that

RN =
n⋃
i=1
Mi, and Mi ∩Mj = ∅, whenever i 6= j.

The union of the open sets ∪ni=1Mi is called the regular part of the stratification.
The singular part of the stratification is the union of all the interfaces between the
open sets (M)i=1,...,n. It is the set

Λ := RN \
n⋃
i=1
Mi.

We consider the following HJB system−∂tu(t, x) +HFi(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )×Mi

u(T, x) = ψ(x), x ∈Mi

(2.1)

where T > 0 is the final time and ψ : RN → R is the final cost, assumed to be
Lipschitz continuous and bounded. HFi :Mi ×RN → R are Bellman Hamiltonians
defined the following way

HFi(x, p) = sup
q∈Fi(x)

{−〈p, q〉} .

Fi : Mi  RN are set-valued maps, called the dynamics, that satisfy standard
hypotheses. The HJB system (2.1) is not defined on the singular set Λ. We propose
to study, under which condition to add at the singular set Λ, that will guarantee
the well-posedness of the HJB system (2.1).

The most natural way to add a condition to the HJB system (2.1) on the singular
set is to define a Hamiltonian H : RN × RN → R on all RN such that

∀p ∈ RN , H(x, p) = HFi(x, p), whenever x ∈Mi,

and the HJB system becomes−∂tu(t, x) +H(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )× RN

u(T, x) = ψ(x), x ∈ RN .
(2.2)

Obviously, H cannot be assumed to be continuous on RN since the Hamiltonians
HFi , i = 1, . . . , n are different and, a priori, don’t have any connection with one
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another. Therefore, the expression of H on the singular set Γ is not obvious at first
sight.

In the case when H is continuous, the well-posedness of equation (2.2) was first
studied in [1]. In particular, a notion of generalized solutions, called the viscosity
notion, was introduced to guarantee existence, uniqueness and stability of the solu-
tion. This notion was extended to the discontinuous case by Ishii in [69] by replacing
the Hamilton Jacobi equation (2.2) with two Hamilton Jacobi inequalities involving
the lower semicontinuous envelope of H, denoted H∗, and the upper semicontinuous
envelope of H, denoted H∗, the following way{

−∂tu(t, x) +H∗(x, ∂xu(t, x)) ≥ 0 for (t, x) ∈ (0, T )× RN (2.3a)
−∂tu(t, x) +H∗(x, ∂xu(t, x)) ≤ 0 for (t, x) ∈ (0, T )× RN . (2.3b)

When u : (0, T ] × RN → R verifies inequality (2.3a) in the viscosity sense, then it
is called a supersolution and when it verifies inequality (2.3b) in the viscosity sense,
then it is called a subsolution. In our particular case of HJB equation (2.1), Ishii’s
extention to the singular set Λ has the following form

−∂tu(t, x) + max
i=1,...n

{HFi(x, ∂xu(t, x))} ≥ 0, (t, x) ∈ (0, T )× Λ

−∂tu(t, x) + min
i=1,...n

{HFi(x, ∂xu(t, x))} ≤ 0, (t, x) ∈ (0, T )× Λ.

However, using Ishii’s extension to the singular set does not guarantee uniqueness
of the viscosity solution in general. In viscosity theory, the uniqueness of the so-
lution comes from the so-called comparison principle. It asserts that if an upper
semicontinuous subsolution u is inferior to a lower semicontinuous supersolution v
on {T} × RN , then u is inferior to v on (0, T ] × RN . Such a comparison result
can no longer be obtained using Ishii’s extension of the Hamiltonian to the singular
set. Therefore, in this chapter, we look to impose a stronger condition on Λ that
will allow us to obtain a comparison result that holds for any upper semicontinuous
subsolution and any lower semicontinuous super solution.

In the literature, a comparison principle was obtained in [42] for equation (2.2)
under the assumption that the Hamiltonian H is measurable with respect to the
space variable. Ishii’s viscosity notion was not used. Instead, it was assumed that
the Hamiltonian H satisfies a “transversality condition” that essentially boils down
to the fact that the behavior of the Hamiltonian at the singular set can be ignored.
The authors in [14] were the first to study discontinuous HJB equations in a similar
layout than ours. They defined suitable Hamilton Jacobi inequalities at the singular
set Λ and showed that a comparison result holds under the assumption that the
subsolution is continuous. In [70], the authors extended the results of [14] and
provided a very thorough analysis on the notion of viscosity solution of a stratified
system. Furthermore, different conditions under which the comparison principle is
satisfied have been investigated in their monograph [43]. In [18, 71], the authors
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have a similar layout to ours. They defined the Hamiltonian H on the singular part
by using the notion of essential Hamiltonian first introduced in [41]. The essential
Hamiltonian is defined from an optimal control interpretation of the HJB system
(2.1). It comes from the set-valued map that represents the “essential velocities” of
the system, meaning the velocities that are taken by the trajectories of the optimal
control problem associated to the HJB system (2.1). This approach is the one we
are going to follow in this chapter as well. We also mention similar publications of
Hamilton Jacobi equations on one dimensional networks that share the same kind
of difficulties as our layout [22, 24, 25, 72, 27].

As for numerical schemes approximating this problem, the only known results of
convergence of finite differences numerical schemes are in the setting of a one di-
mensional network [44, 46, 45]. However, to the best of our knowledge, there aren’t
any known convergence results in our setting.

HJB equations are also related to a geometric notion known as flow invariance in the
theory of differential inclusions [9, chapter 12]. There are two types of invariances,
weak and strong invariance. Weak/strong invariance are geometric properties that
link the controlled system of the optimal control problem associated to the HJB
system, with the epigraph/hypograph of the supersolution/subsolution respectively.
The classical case, meaning the absence of a stratification, has been treated thor-
oughly in the literature [9, 6]. In the case of stratified domains, the authors in [41]
analyzed the characterization of weak and strong invariance principles using the es-
sential Hamiltonian. However their statement of the strong invariance property was
inaccurate. Despite their correct intuition regarding the choice of the Hamiltonian,
their choice of the “test functions” (in analogy with the viscosity theory) did not
take into account the singular geometry of the problem which turns out to be crucial
for proving this property.

In this present work, we aim to prove the well-posedness of the HJB equation on
stratified domains. We will first define a Hamiltonian HΛ on the singular set Λ and
consider the HJB equation:

−∂tu(t, x) +HFi(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )×Mi,
−∂tu(t, x) +HΛ(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )× Λ,
u(T, x) = ψ(x) for x ∈ RN .

(2.4)

The Hamiltonian HΛ is defined on the interface Λ in the form of a maximum of lower
semicontinuous Hamiltonians obtained along the same lines of [41]. Then, we will
revisit the definition of viscosity solution and give a new one that encodes the nature
of the singular geometry of the problem. This new definition of viscosity will allow
us to extend the strong comparison type results, known when the Hamiltonian is
Lipschitz continuous, to the present setting. More precisely, we prove the following
result:
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Let u and v be respectively upper semi-continuous and lower semi-continuous func-
tions on (0, T ] × RN . If u is a subsolution of (2.4), and if v is a supersolution of
(2.4), then u ≤ v on (0, T ]× RN .
The proof of this result relies on nonsmooth analysis techniques. In particular, we
introduce an optimal control problem whose value function will be the solution of
the HJB equation. In the classical case, the nonsmooth analysis approach consists in
interpreting the subsolution property of the value function as the strong invariance
of the hypograph of the value function and the supersolution property as the weak
invariance of its epigraph. We will extend the weak and strong invariance results to
the stratified setting. We would like to emphasize that the extension of invariance
principles is also a contribution of this chapter.

The strong comparison principle will have two major consequences. First, it will
allow to obtain some stability results in this setting in the presence of perturbations
on the dynamics. We prove that if there exist sequences

(
F j
i

)
j
of set-valued maps

such that F j
i −→ Fi with respect to the Hausdorff distance, and a sequence (vj :

RN → R)j of lower semicontinuous (respectively upper semicontinuous) functions
such that vj → v locally uniformly in RN and suppose for all j, vj is a supersolution
(respectively subsolution) of

−∂tu(t, x) +HF ji
(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )×Mi,

−∂tu(t, x) +Hj
Λ(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )× Λ,

u(T, x) = ψ(x) for x ∈ RN .

then v is a supersolution (respectively subsolution) of (2.4).

Finally, we will extend the known result due to Barles and Souganidis [47] for the
convergence of monotone numerical schemes to the stratified setting. The numerical
scheme has the following form in each demain:


Shi (th, xh, uh(th, xh), [uh](th,xh)) = 0 for (th, xh) ∈ (Π∆t × G∆x)

⋂
((0, T )×Mi),

ShΛ(th, xh, uh(th, xh), [uh](th,xh)) = 0 for (th, xh) ∈ (Π∆t × G∆x)
⋂

((0, T )× Λ),
uh(T, xh) = ψ(xh), for (th, xh) ∈ (Π∆t × G∆x) ∩ {th = T},

where Π∆t is a time grid, G∆x is a spatial grid, h = (∆t,∆x) is the step of the
grid and [uh](th,xh) are all the values of of uh on G∆x at other points than (th, xh)
on the grid. We show that under the usual hypotheses of monotonicity, stability
and consistency, the numerical scheme converges locally uniformly to the viscosity
solution of (2.4).

The chapter is organized as follows: in Section 2.2, we define the notations and
conventions used throughout the chapter. We also define the geometry of the prob-
lem, the dynamics of the HJB equation and we state the main results. Section 2.3
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is devoted to the invariance principles, a nonsmooth analysis point of view of the
HJB equation. In Section 2.4, we first define the optimal control problem associ-
ated to the HJB equation, we introduce the value function and we prove that the
super-optimality and sub-optimality properties of the value function are equivalent
to it being a viscosity supersolution and subsolution respectively. Then we prove
the strong comparison result. Section 2.5 is devoted to the proofs of the stability
results. Finally, we prove in section 2.6 a general convergence result for monotone
numerical schemes.

2.2 Main results

2.2.1 Notations and conventions

Throughout the chapter, we denote by RN the Euclidean space where the stratifi-
cation is defined, B the unit ball of center 0 of RN and B(x, r) = x+ rB.
For any set S ⊂ RN , we denote by S and ∂S its closure and topological boundary.
We denote by co(S) the convex hull of S and by L , the Lebesgue measure on R.
The distance function associated to S is denoted by dS(x) = inf{|x − y| : y ∈ S}
and the set of solutions where the infimum is attained is called the projection of x
on S and denoted by projS(x) (note that it might be empty).
The Bouligand tangent cone of S at x, denoted TS(x) is defined the following way:

TS(x) =
{
v ∈ RN : lim inf

t→0+

dS(x+ tv)
t

= 0
}
.

If A and B are two sets of RN , we define a distance between them by

d(A,B) = inf {|a− b| : (a, b) ∈ A×B },

with the convention d(∅, ∅) = 0 and d(∅, B) = +∞ if B 6= ∅.
For K1 and K2 two compact sets of RN , the Hausdorff distance between them is
given by

dH(K1, K2) = max

{
sup
x∈K2

dK1(x) , sup
x∈K1

dK2(x)
}
,

with the convention dH(∅, ∅) = 0 and dH(∅, S) = +∞ if S 6= ∅.
For a given function f : RN → R, we denote by epi(f) and hyp(f) respectively its
epigraph and hypograph, and defined the following way:

epi(f) =
{

(x, r) ∈ RN × R : f(x) ≤ r
}
, hyp(f) =

{
(x, r) ∈ RN × R : f(x) ≥ r

}
.

If Γ : RN  RN is a set-valued map, then we denote by dom(Γ) the set of points
x ∈ RN such that Γ(x) 6= ∅.
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For T > 0, we define the differential inclusion associated to Γ, with the initial
condition (t, x) ∈ (0, T )× RN , by

(DI)Γ(t, x) :
{
ẏ(s) ∈ Γ(y(s)) a.e. s ∈ [t, T ]
y(t) = x.

Finally, the abreviations ‘u.s.c.’, ‘l.s.c’, ‘HJB’ and ‘w.r.t’ respectively stand for: ‘up-
per semicontinuous’, ‘lower semicontinuous’, ‘Hamilton Jacobi Bellman’ and ‘with
respect to’.

2.2.2 Stratification

Let N, n ≥ 1 be two strictly positive integers. Let Mi, i = 1, ..., n be pairwise
disjoint, connected open sets of RN . We suppose that RN = ∪ni=1Mi and we denote
by Λ := RN \ ∪ni=1Mi the singular set. Furthermore, we suppose that Λ is equal to
a union of l, pairwise disjoint, C2 embedded sumbanifoldsMn+1, . . . ,Mn+l of lower
dimension than N and with empty boundary, so that we have

RN =
n⋃
i=1
Mi =

 n⋃
i=1
Mi

⋃Λ =
n+l⋃
i=1
Mi.

Finally, we suppose that each Mi, i = 1, . . . , n + l, is proximally smooth and rel-
atively wedged. All these assumptions on the stratification are summarized as fol-
lowing:

(H1)



(i) EachMi is a C2 embedded submanifold, with empty boundary,
(ii) dim(M1) = ... = dim(Mn) = N and dim(Mn+1), ..., dim(Mn+l) < N,

(iii) RN =
n⋃
i=1
Mi =

n+l⋃
i=1
Mi,

(iv) ∀i, j = 1, ..., n+ l, Mi ∩Mj = ∅, if i 6= j,
(v) ifMi ∩Mj 6= ∅, thenMi ⊂Mj orMj ⊂Mi,
(vi) eachMi is proximally smooth and relatively wedged.

We call
n⋃
i=1
Mi the regular part of the stratification and Λ :=

l⋃
i=1
Mn+i the singular

part or the interfaces.

Comments on the Hypothesis (H1)
Hypotheses (H1)(i) to (H1)(v) are standard for a stratification of RN . As for
(H1)(vi), a closed set X ⊂ RN is said to be proximally smooth if there exists r > 0
such that the projection map projX(.) is a singleton on the tube {x ∈ X, dX(x) < r}
[73]. The class of proximally smooth sets includes convex subsets of RN and C2 com-
pact submanifolds of RN .
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Relative wedgeness hypothesis was introduced in [41] for C2 submanifolds of RN

such that their closure is proximally smooth. Roughly speaking, relative wedgeness
of Mi, with i ∈ {1, ..., n + l}, means that the dimension of the Bouligand tangent
cone at every point ofMi is equal to the dimension of the manifoldMi [41]. The
precise definition of this property is presented in Section 2.7.1.

Example 2.1. Figure 2.1 shows an example of the stratified setting, where N = 1,
n = 2, l = 1.

M1 = (0,+∞)e1, M2 = (0,+∞)e2, M3 = {0}.

M1

e1

M2

e2
•
M3

Figure 2.1: Example of a stratification of R.

Example 2.2. This example shows a stratification of R2, where N = 2, n = 2,
l = 3.

M1 = {(x1, x2) ∈ R2 : x2 > 0}, M2 = {(x1, x2) ∈ R2 : x2 < 0}, M5 = {(0, 0)}

M3 = {(x1, x2) ∈ R2 : x1 < 0, x2 = 0}, M4 = {(x1, x2) ∈ R2 : x1 > 0, x2 = 0}

M4M3 •

M1

M2

M5

Figure 2.2: Example of a stratification of R2.

Example 2.3. Figure 2.3 shows an example of the stratified setting, where N = 2,
n = 4, l = 5.
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M5

M1

M2

M6

M4

M3

•M9

M7

M8

Figure 2.3: Example of a stratification of R2.

Example 2.4. The following example shows a stratification of R2, with n = 2 and
l = 1. M1 is the unit open disc,M2 is the complement of the unit closed disc and
M3 is the unit circle.

M1

M3

M2

For any x ∈ RN we define the index set-valued map

I(x) := { i ∈ {1, ..., n+ l} : x ∈Mi }.

Remark 2.2.1. It is clear from the definition of the stratification that for x ∈ RN

fixed, and y ∈ RN close enough to x, we have I(y) ⊆ I(x).

2.2.3 Setting of the problem
We begin by defining the dynamics for the Hamiltonians presented in the introduc-
tion. On each Mi with i = 1, ..., n, we are given a set-valued map Fi : Mi  RN
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that satisfies the standard hypotheses

(SH)



(i) x Fi(x) has non empty convex and compact images,
(ii) ∃λ > 0 such that max{ |p|, p ∈ Fi(x)} ≤ λ(1+|x|),
(iii) Fi is Lipschitz continuous on bounded sets ofMi w.r.t the Hausdorff

metric, i.e. for each R > 0, there are constants K1,R, . . . , Kn,R > 0 :
dH(Fi(x), Fi(y)) ≤ Ki,R|x− y| if x, y ∈ B(0, R) ∩Mi, i ∈ {1, . . . , n}.

We are interested in studying the well-posedness of the following HJB equation. −∂tu(t, x) + sup
ν∈Fi(x)

{−〈ν, ∂xu(t, x)〉 } = 0 for (t, x) ∈ (0, T )×Mi, i = 1, . . . , n,

u(T, x) = ψ(x),
(2.5)

where T > 0 is the final time and ψ : RN → R is the final cost. We assume the
following hypothesis on the final cost:

(Hψ) : ψ is Lipschitz continuous and bounded.

The study of HJB equations is done using a weak notion of solutions, called viscosity
solutions. This setting requires the HJB equation to be defined at every point.
Hence, we need to find suitable interfaces conditions in order to guarantee the well-
posedness of the system. To do so, we aim at defining some appropriate dynamics
to consider at the interfaces.

Notice first that since the dynamics Fi, i = 1, ..., n verify hypothesis (SH), then
they can be extended toMi while verifying the same hypothesis (SH). We denote
this extension by Fi as well. In order to define the dynamics on the whole space,
a classical idea is to consider the Filippov regularization of (Fi)i=1,...,n, denoted
F : RN  RN and defined by [74]

F (x) =
⋂
ε>0

co
⋃
y

{∪i∈{1...n}Fi(y) : |x− y|≤ ε}.

It is straightforward to check that F has a linear growth. However, it might not be
Lipschitz in general. By the nature of our problem, the Filippov regularization is
equal to

F (x) = co {Fi(x) : i ∈ {1 . . . n} }.

For (x, p) ∈ RN × RN , we define the Hamiltonian associated to F by

HF (x, p) = sup
q∈F (x)

{−〈p, q〉} .

Since F is only upper semicontinuous, the Hamiltonian HF (., p) is also only upper
semicontinuous. If HF (., p) were to be Lipschitz continuous, we would have defined
our HJB equation using the Hamiltonian associated to F and the well-posedness of
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the HJB system would follow from the classical theory, see [9, 75]. This is generally
not the case in a stratified domain.

Nevertheless, the next step is to use F to define the dynamics at the interfaces. We
define the dynamics Fn+i :Mn+i  RN , for i = 1, ..., l on each interfaceMn+i by

Fn+i(x) = F (x) ∩ TMn+i(x),

where TMn+i(x) is the Bouligand tangent cone which coincides with the classical
tangent space ofMn+i at x since it is a C2 manifold. Furthermore, we suppose that
all the interface dynamics are Lipschitz continuous on bounded sets as well:

(HD) for i = 1, ..., l, Fn+i(.) is Lipschitz continuous on bounded sets ofMi.

We point out that since we have the conventions d(∅, S) = +∞ if S 6= ∅ and
d(∅, ∅) = 0, it follows that (HD) implies that Fn+i is either identically the empty set
or nonempty on the whole domainMn+i. Under assumption (HD), each Fi :Mi  
RN , (i = n+ 1, ..., n+ l) satisfies (SH). Thus each Fi can be extended toMi while
verifying the same hypothesis (SH). We denote this extension by Fi as well.

A sufficient condition for (HD) to be satisfied is full controllability near Λ. We mean
by full controllability the following assumption:

(CH) ∃ r > 0 : for all i = 1, ..., n, and x ∈ Λ ∩Mi : B(0, r) ⊆ Fi(x).

Proposition 2.4.1. [18, Lemma 2.2.] Assume (H1) and (CH). Then, (HD) holds.

For x ∈Mi, i = 1, ..., n+ l, and p ∈ RN , we define the Hamiltonian

HFi(x, p) := sup
q∈Fi(x)

{−〈p, q〉} .

At this point, we are tempted to define the HJB equation on the singular set using
the dynamics Fi(.) defined above, in the following way:


−∂tu(t, x) +HFi(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )×Mi, i = 1, . . . , n,
−∂tu(t, x) + max

i∈I(x)
{HFi(x, ∂xu(t, x)) } = 0 for (t, x) ∈ (0, T )× Λ,

u(T, x) = ψ(x).
(2.6)

However, it turns out that the set of dynamics in equation (2.6) is too large. These
dynamics may contain velocities that are not useful for the evolution of the solution
at the interface. This claim is analyzed in the next subsection.
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2.2.4 The essential dynamics
We define the notion of essential dynamics for each domain, introduced in [41] for
stratified Euclidean spaces. For i = 1, ....n + l, we define the essential dynamics on
eachMi by

F ]
i (x) = Fi(x) ∩ TMi

(x), for all x ∈Mi,

where TMi
(x) is the Bouligand tangent cone ofMi at x. Notice that if x ∈Mi, we

have F ]
i (x) = Fi(x). The associated Hamiltonian is defined as

HF ]i
(x, p) = sup

q∈F ]i (x)
{−〈p, q〉} .

The essential dynamics F ]
i on each domain represent the inward pointing velocities

of Fi onMi. We suppose that each F ]
i is l.s.c.

(HESS) for all i = 1, . . . , n+ l, F ]
i is l.s.c.

Hypothesis (HESS) holds for many number of cases. In particular, if we assume the
controllability assumption (CH) to hold for the dynamics, then (HESS) holds for all
stratifications presented in Examples 2.1, 2.2 and 2.3. A discussion about sufficient
conditions to ensure (HESS) is given in Section 2.7.2.
The essential dynamics on RN is defined as the union of the essential dynamics on
each domain.

∀x ∈ RN , F ](x) =
n+l⋃
i=1
{Fi(x) ∩ TMi

(x) : x ∈Mi }.

Its associated Hamiltonian is also defined as usual. For (x, p) ∈ RN × RN , we have

HF ](x, p) = sup
q∈F ](x)

{−〈p, q〉} .

Example 2.5. We consider the stratification of R defined in Example 2.1. Let
ci ≥ 0 with i = 1, 2 be real positive constants. We define the following dynamics on
each branch

Fi(x) = [−ci, ci] , i = 1, 2.
The resulting HJB system is the Eikonal equation on the stratification 2.1. The
dynamics at the interfaceM3 and the essential dynamics are respectively equal to

F3(.) ≡ {0} , F ](x) =
{

[−ci, ci] x ∈Mi i = 1, 2,
[−c2, c1] x = 0.

Let T > 0 be a given time horizon. We consider the following HJB system associated
to the dynamics F ]

i
−∂tu(t, x) + max

i∈I(x)
{HF ]i

(x, ∂xu(t, x)) } = 0 for (t, x) ∈ (0, T )× RN ,

u(T, x) = ψ(x),
(2.7)
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where ψ : RN → R is the final cost that satisfies (Hψ).

Notice that in the HJB equation (2.7), if x belongs to the regular part of the stratifi-

cation (i.e. x ∈
n⋃
i=1
Mi), then it is the same as the HJB equation (2.5). So equation

(2.7) has the following form
−∂tu(t, x) +HFi(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )×Mi, i = 1, · · · , n,
−∂tu(t, x) + max

i∈I(x)
{HF ]i

(x, ∂xu(t, x)) } = 0 for (t, x) ∈ (0, T )× Λ, i = n+ 1, · · · , n+ l,

u(T, x) = ψ(x).
(2.8)

Given that we consider a stratified setting, one cannot use the classical notion of
viscosity solution. We are going to define a new one that encapsulates the singular
nature of the problem.

Definition 2.1. (Viscosity supersolution). Let u : (0, T ] × RN → R be a l.s.c
function. We say that u is a supersolution of (2.7) at (t, x) ∈ (0, T ) × RN if and
only if there exists i ∈ I(x) such that for all φ ∈ C1((0, T ) × RN), u − φ attains a
local minimum in (0, T )×Mi at (t, x), we have

−∂tφ+ HF ]i
(x, ∂xφ) ≥ 0.

Definition 2.2. (Viscosity subsolution). Let u : (0, T ]×RN → R be a u.s.c function.
We say that u is a subsolution of (2.7) at (t, x) ∈ (0, T )×RN if and only if for all
i ∈ I(x), for all φ ∈ C1((0, T )×RN), u−φ attains a local maximum in (0, T )×Mi

at (t, x), we have

−∂tφ+HF ]i
(x, ∂xφ) ≤ 0.

Definition 2.3. (Viscosity solution). u is a viscosity solution of (2.7) if and only if
it is both a supersolution and a subsolution and satisfies the final condition

u(T, x) = ψ(x), ∀x ∈ RN .

The above definitions of viscosity super- and subsolutions can be rewritten using
the viscosity sub-gradient and super-gradient (also known as the semijets [3, Page
10] or Dini sub/super gradient [9, Definition 11.18]).

Definition 2.4. (Viscosity sub/super-gradient). We define the viscosity sub- and
super-gradient the following way.
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• Let u : RN → R ∪ {+∞} be a l.s.c function. The viscosity sub-gradient (or
subjet) at a point x ∈ dom(u) is the set,

D−u(x) :=
{
p ∈ RN : lim inf

y→x

u(y)− u(x)− 〈p, y − x〉
|y − x|

≥ 0
}
.

• Similarly, for an u.s.c function u : RN → R ∪ {−∞}, the viscosity super-
gradient (or superjet) at a point x ∈ dom(u) is the set,

D+u(x) := −D−(−u)(x) =
{
p ∈ RN : lim sup

y→x

u(y)− u(x)− 〈p, y − x〉
|y − x|

≤ 0
}
.

Remark 2.2.2.

• Let u : (0, T ]×RN → R be a l.s.c function. We say that u is a supersolution
of (2.7) at (t, x) ∈ (0, T )× RN if and only if there exists i ∈ I(x), such that

−θ +HF ]i
(x, ξi) ≥ 0 ∀(θ, ξi) ∈ D−ui(t, x),

with ui ≡ u onMi and ui ≡ +∞ elsewhere.

• Let u : (0, T ]× RN → R be an u.s.c function. u is a subsolution of (2.7) at
(t, x) ∈ (0, T )× RN if and only if for all i ∈ I(x), we have

−θ +HF ]i
(x, ξ) ≤ 0 ∀(θ, ξ) ∈ D+ui(t, x),

with ui ≡ u onMi and ui ≡ −∞ elsewhere.

Indeed, if for example u : (0, T ]×RN → R is a l.s.c function, we set: ui ≡ u onMi

and ui ≡ +∞ elsewhere, for any i = 1, ..., n + l. Then, for (t, x) ∈ (0, T )×Mi, we
have

(θ, ξi) ∈ D−ui(t, x) ⇐⇒ ∃φ(i) ∈ C1((0, T )× RN), such that ui − φ(i) attains a
local minimum at (t, x).

Since ui−φ(i) ≡ +∞ whenever x /∈Mi, we get that φ(i) satisfies the requirements of
Definition 2.1. Conversely, if there exists such function φ as in Definition 2.1, then
ui− φ attains a local maximum in RN at (t, x). The exact same reasoning holds for
subsolutions.

Next we state the main results. In particular, we will show that equation (2.7) has
a unique viscosity solution (following Definition 2.3).
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2.2.5 Statement of the main results
Theorem 2.6. Assume (H1), (SH), (Hψ), (HESS) and (CH). Then the HJB
equation (2.7) has a unique continous solution in the sense of Definition 2.3.

Theorem 2.7. (Strong comparison principle). Assume (H1), (SH), (HD) and
(HESS). Let u1, u2 : (0, T ] × RN → R be respectively a l.s.c supersolution and
an u.s.c subsolution in the sense of Definition 2.3 with u2(T, .) ≤ u1(T, .). Then

u2(t, x) ≤ u1(t, x) ∀(t, x) ∈ (0, T ]× RN .

It is worth-noticing that, unlike the previous literature on the subject [19, 18, 71]
or [70, 16, 15], the strong comparison principle stated in the above theorem does
not require the subsolution to be continuous nor to have any particular behavior
on the interface. The proof of this result will clearly show the importance of the
use of essential dynamics with the notion of viscosity as it is defined in Definitions
2.1-2.2 (and more precisely the choice of the test functions in those definitions).
Furthermore, the unique viscosity solution in Theorem 2.6 is the value function
associated to the Mayer optimal control problem with the dynamics F (.). A study of
the value function and the associated optimal control problem is presented in Section
2.4. Hypothesis (CH) in Theorem 2.6 is only used to give sufficient conditions for
the value function to be continuous. Theorefore, Theorem 2.6 holds if one assumes
that the value function is continuous instead of assuming (CH).
The proofs of Theorems 2.6, 2.7 are given in Section 2.4. The proofs will rely on
invariance theorems, particularly the strong invariance property. Both invariance
theorems are stated in Section 2.3 and proven in Section 2.7.3. Furthermore, we
will establish stability results for supersolutions and subsolutions in presence of
perturbations of the Hamiltonian in Section 2.5. Section 2.6 is devoted to stating
and proving a general convergence result of monotone numerical schemes. The
numerical scheme has the following form in eachMi, i = 1, . . . , n+ l,

Shi (th, xh, uh(th, xh), [uh](th,xh) } = 0 for (th, xh) ∈ (Π∆t × G∆x
i ),

where Π∆t is time grid, G∆x
i is a spatial grid ofMi and h = (∆t,∆x) is the step of

the grid. We show that under the usual hypotheses of monotonicity, stability and
consistency, the numerical scheme converges. This result generalizes the famous
convergence theorem of monotone numerical schemes in the classical case, du to
Barles and Souganidis [47].

2.2.6 Comparison with existing literature
Recently, control problems and Hamilton Jacobi equations on stratified structures
have been investigated in several works. A similar setting to the one considered
in this chapter can be found in [16, 15, 18, 19, 71]. The techniques used in [18,
19, 71] are also all based on invariance principles and on the use of the essential
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Hamiltonian to describe the behavior of the value function. Here, we investigate
further the essential dynamics and its corresponding Hamiltonian. In particular, we
show that the principles of invariances (weak and strong) can be fully characterized
by using the essential Hamiltonian (for both principles). This result is new, it
generalizes to the stratified case the invariance principles known in the literature
for a Lipschitz dynamics. As consequence of the invariance principles, particularly
the strong invariance principle, we obtain a strong comparison principle for equation
(2.7) by assuming further that the essential dynamics F ]

i (.) are l.s.c in their domains.
The comparison principle states that for any u1 u.s.c subsolution of (2.7) and for any
u2 l.s.c supersolution of (2.7), we have u1 ≤ u2 in RN × (0, T ]. Unlike the results
established in [16, 15, 18, 19, 71], the comparison principle does not require any
additional controllability assumption nor the continuity of the subsolution around
the interface.
The setting of control problems considered in [14, 70] is very close to ours. How-
ever, in those papers, the HJB equation considered on the singular set Λ is different
from the one we use in (2.7). Indeed, in [14, 70], the Hamiltonian in each stratum
is built by using only local information with the dynamics defined in the stratum
without taking into account the behaviour of the dynamics at the boundary of the
stratum. Therefore, the Hamiltonian at the interface does not take into account
the information coming from neighboring strata. As consequence, the comparison
principle in [14] requires an additional controllability condition and the continuity of
subsolutions. The work of [70] is more general, it requires a weaker controllability as-
sumption and gives a comparison between u.s.c subsolutions and l.s.c supersolutions
if the subsolution satisfies Ishii’s condition or a weak continuity requirement.
To compare our results with those presented in [70], we will analyze different exam-
ples. In the first case, we start from a control problem as considered in [70], then
we compare on this problem our assumptions and results to those in [70]. Then, we
consider two specific cases.

Example 2.8. Notice that the setting in [70] concerns optimal control problems with
final and running costs, on a general stratifications of RN . For a simple comparison,
we will restrict ourselves to a framework without a distributed cost. We also suppose
that N = 2 and the stratification is composed simply of two half-spaces of R2

separated by a line (n = 2 and l = 1)

RN =M1 ∪M2 ∪M3

with

M1 := {(x1, x2) ∈ R2, x1 < 0}, M2 := {(x1, x2) ∈ R2, x1 > 0},

M3 := {(x1, x2) ∈ R2, x1 = 0}.
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M2M1 M3

This stratification satisfies (H1) and it is a regular stratification (in the sense of [70])
as well. Let F (.) be an u.s.c dynamics defined on RN , with

Fi(x) = F (x) ∩ TMi
(x) for x ∈Mi, and for i = 1, 2, 3. (2.9)

For t ∈ [0, T ] and x ∈ RN , consider the set of trajectories S(t,T )(x) defined as

S(t,T )(x) := {y : [t, T ]→ RN : ẏ(s) ∈ F (y(t)) for a.e. s ∈ [t, T ], y(t) = x}.

We define the value function the following way

ϑ(x, t) := inf{ψ(y(T )), y(.) ∈ S(t,T )(x)}.

We will discuss the properties of the value function in Section 2.4. In [70], the cost
function ψ, the dynamics F (.) and the dynamics Fi(.) satisfy

(HD,[5])


(i) The dynamics F is uniformly bounded on RN .

(ii) For i = 1, 2, 3, Fi is uniformly continuous onMi.

(iii) The cost function ψ is bounded and uniformly continuous on RN .

Besides, a normal controllability assumption is introduced in [70]. In the simple
setting of this example, this normal controllability is the following

(HN,[5]) For every x ∈M3, and r > 0, there exist C > 0 and δ > 0 such that

HF3(y, p) ≥ δ|p2|−C(1+ |p1|), ∀y ∈ B(x, r)∩M3, p = (p1, p2) ∈ TM3(x)×T ⊥M3(x).

The set T ⊥M3(x) is the orthogonal space to the tangent space TM3(x) in RN . So RN

is the direct sum of the tangent space and the normal space

RN = TM3(x)⊕ T ⊥M3(x).

According to [70], under assumptions (HD,[5]) and (HN,[5]), the value function ϑ is
bounded and continuous. Moreover, ϑ is a supersolution of the equation

−∂tv(x, t) +HF (x, ∂xv(x, t)) ≥ 0, (2.10a)



43 2.2. Main results

and ϑ is a subsolution to the system of equations

−∂tv(x, t) +HFi(x, ∂xv(x, t)) ≤ 0 ∀x ∈Mi, and for i = 1, 2, 3. (2.10b)

Furthermore, let v2 be a l.s.c supersolution of (2.10a), and let v1 be a u.s.c subsolu-
tion of (2.10b) satisfying one of the following conditions:

• (i) v1 is continuous onM3,

• (ii) v1 satisfies Ishii’s condition, i.e, u is subsolution to

−∂tv(x, t) +H∗(x, ∂xv(x, t)) ≤ 0, for x ∈M3,

where H∗ is the l.s.c envelope of H:

H∗(x, p) := lim inf
(y,q)→(x,p)

HF (y, q).

Then, under assumptions (HD,[5]) and (HN,[5]), and by [70, Theorem 4.1] we have
v1 ≤ v2 on RN × [0, T ]. The result is even more precise and provides a local strong
comparison result.
Now, let us see how our work differs from [70]. Our assumptions (SH), (HD) and
(HESS) require the dynamics Fi(.) to be Lipschitz continuous on bounded sets ofMi

with a linear growth. No boundedness is required. Furthermore, the essential dy-
namics F ]

i (.) are l.s.c. onMi. Under assumption (HESS), the result of Theorem 2.7
provides a comparison between subsolutions and supersolutions of the following HJB
system
−∂tu(t, x) +HFi(x, ∂xu(t, x)) = 0 for (t, x) ∈ (0, T )×Mi, i = 1, 2,
−∂tu(t, x) + max

i=1,2,3
{HF ]i

(x, ∂xu(t, x)) } = 0 for (t, x) ∈ (0, T )×M3,

u(T, x) = ψ(x).
(2.11)

This result does not require a controllability assumption and it states that for every
u.s.c subsolution u1 to (2.11) and for every l.s.c supersolution of (2.11), we have
u1 ≤ u2 on (0, T ]× RN .
Note that in the system (2.11), we use the same Hamiltonian max

i
HF ]i

on M3 to
describe the sub and super optimality. This Hamiltonian includes all the dynamics
of trajectories starting from a position inM3. Therefore, the Hamiltonian max

i
HF ]i

contains more information than Hamiltonian HF3 . Theorem 2.7 gives a comparison
principle for (2.11) without requiring additional information on subsolutions.
The controllability assumption (CH), which is stronger than (HN,[5]) is used only
to prove that the value function is continuous (see Section 2.4). If it is continuous
then we prove that it is the viscosity solution of (2.11). The continuity of the value
function can be obtained in some cases without assumption (HN,[5]) or (CH).
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Example 2.9. Consider the same stratification as in Example 2.8.

M2M1 M3

The dynamics F1(.) and F2(.) defined inM1 andM2 respectively, with

F1(x) := B(0, 1) inM1, F2(x) := B(0, 2) inM2.

We define F (.) as the Filippov regularization of F1(.) and F2(.). It is given by

F (x) =


F1(x) = B(0, 1) if x ∈M1,

F2(x) = B(0, 2) if x ∈M2,

B(0, 2) if x ∈M3.

The essential dynamics are given by

F ]
1(.) = F1(.) inM1 and F ]

1(.) = [−1, 0]× [−1, 1] inM3 =M1 \M1,

F ]
2(.) = F2(.) inM2 and F ]

2 = [0, 2]× [−2, 2] inM3 =M2 \M2,

F ]
3(.) = {0} × [−2, 2] inM3 =M3.

The dynamics of this example satisfy assumptions (SH), (HD), (HESS) and (CH).
Furthermore, it satisfies hypotheses (HD,[5]) and (HN,[5]) from [70]. Hence, our results
give a comparison principle for any u.s.c subsolution u1 and any l.s.c.supersolution
u2, in the sense of Theorem 2.7, of the following equation

−∂tv(t, x)+|∂xv(t, x)| = 0 in (0, T )×M1,

−∂tv(t, x) + 2|∂xv(t, x)| = 0 in (0, T )×M2,

−∂tv(t, x) + max
(

max
θ∈[−π2 ,

π
2 ]
〈∂xv(t, x),

cos(θ)
sin(θ)

〉, 2 max
θ∈[π2 ,

3π
2 ]
〈∂xv(t, x),

cos(θ)
sin(θ)

〉) = 0

in (0, T )×M3,

v(T, x) = ψ(x).

Moreover, by Theorem 2.6, the above equation admits a unique continuous viscosity
solution. The viscosity solution is the value function ϑ associated to the optimal
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control problem defined using the dynamics F (.) and the final cost ψ (see Section
2.4). By [70, Theorem 4.1], ϑ is also the unique continuous function that satisfies
v(T, x) = ψ(x) and is both a viscosity supersolution of−∂tv(t, x)+|∂xv(t, x)| ≥ 0 inM1,

−∂tv(t, x) + 2|∂xv(t, x)| ≥ 0 inM2 ∪M3,
(2.12)

and a viscosity subsolution of


−∂tv(t, x)+|∂xv(t, x)| ≤ 0 inM1,

−∂tv(t, x) + 2|∂xv(t, x)| ≤ 0 inM2,

−∂tv(t, x) + max
(
〈∂xv(t, x),

0
2

〉, 〈∂xv(t, x),
 0
−2

〉) ≤ 0 inM3.

(2.13)

The comparison theorem in [70] allows also to compare any l.s.c supersolution of
(2.12) and any u.s.c subsolution of (2.13).

Example 2.10. In this example, we consider a different stratification of R2 in the
following way

M2M1 •M5

M4

M3

M1 := {x = (x1, x2) ∈ R2, x1 < 0}, M2 := {x = (x1, x2) ∈ R2, x1 > 0},

M3 := {0}×]−∞, 0[, M4 := {0}×]0,+∞[, andM5 := {0}.

The stratification satisfies (H1). Consider the dynamics F1(.) and F2(.) onM1 and
M2 respectively defined as follows:

F1(x) := c1

(
x2
−x1

)
onM1, F2(x) := c2

(
x2
−x1

)
onM2.
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Figure 2.4: In red the dynamics F1(.) and in blue the dynamics F2(.).

The convexified dynamics F (.) defined on R2 that coincide with F1(.) on M1 and
with F2(.) onM2 is equal to

F (x) =


F1(x), x ∈M1,

F2(x), x ∈M2,

[min(c1, c2),max(c1, c2)]ex1 elsewhere.
Assume that c1, c2 > 0. Then we have

F3(.) = ∅ inM3, F4(.) = ∅ inM4, F5(.) = {0} inM5.

The essential dynamics are defined by

F ]
1(x) =


F1(x), inM1,

F1(x), inM3,

∅, inM4,

{0}, inM5.

F ]
2(x) =


F2(x) inM2,

∅, inM3,

F2(x), inM4,

{0}, inM5.

F ]
3(x) =

∅, inM3,

{0} inM5.
F ]

4(x) =

∅, inM4,

{0} inM5.
F ]

5(0) = {0}.

We consider the following HJB system

−∂tu(t, x) + sup
ν∈Fi(x)

{−〈∂xu(t, x), ν〉} = 0 for (t, x) ∈ (0, T )×Mi, i = 1, 2,

−∂tu(t, x) + sup
ν∈F1(x)

{−〈∂xu(t, x), ν〉} = 0 for (t, x) ∈ (0, T )×M3,

−∂tu(t, x) + sup
ν∈F2(x)

{−〈∂xu(t, x), ν〉} = 0 for (t, x) ∈ (0, T )×M4,

−∂tu(t, 0) = 0 for t ∈ (0, T ),
u(T, x) = ψ(x) for x ∈ RN .
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The dynamics of this example satisfy the assumptions (SH), (HD) and (HESS) but
the controllability assumptions are not satisfied. However, whenever we choose ψ
Lipschitz continuous and bounded, we can prove there exists a unique continuous
solution to the above HJB system and it is the value function associated to the
optimal control problem defined with F (.) (see Section 2.4). Moreover, Theorem 2.7
provides a strong comparison principle for the above HJB system.

2.3 Invariance Principles
The following results are known as weak and strong invariance properties. They are
known in the classical case, when the dynamics F (.) is Lipschitz continuous, see [9,
Chapter 11]. For the stratified case, the first attempt to prove these results was in
[41], using the essential Hamiltonian strategy. Although their intuition was correct,
the proximal normal cone used is the same as the one in the classical case (see [9,
Chapter 11]), which does not take into account the geometry of the problem. We
start by recalling the definitions of some nonsmooth analysis tools and the definitions
of weak and strong invariance.

Definition 2.5. (Proximal sub-gradient and super-gradient).

• Let u : RN → R ∪ {+∞} be a l.s.c function. We say that ζ is proximal sub-
gradient at a point x ∈ dom(u) for some σ = σ(x, ζ) and some neighborhood
V = V (x, ζ) of x if we have

u(y)− u(x) + σ|y − x|2≥ 〈ζ, y − x〉, ∀ y ∈ V.

The collection of such ζ form the proximal sub-gradient. It is denoted ∂pu(x).

• Similarly, Let u : RN → R ∪ {−∞} be an u.s.c function. We say that ζ is
proximal super-gradient at a point x ∈ dom(u) for some σ = σ(x, ζ) and some
neighborhood V = V (x, ζ) of x if we have

u(y)− u(x) + σ|y − x|2≤ 〈ζ, y − x〉, ∀ y ∈ V.

The collection of such ζ forms the proximal super-gradient. It is denoted
∂pu(x). We also have the property ∂pu(x) = −∂p(−u)(x).

Definition 2.6. (Proximal normal cone).
Let S ⊆ RN be a closed set and x ∈ S. A vector ζ is a proximal normal to the
closed set S at the point x if there exists σ > 0 such that

〈ζ, y − x〉 ≤ |ζ|2σ |y − x|
2 ∀y ∈ S.

The set of all proximal normal vectors at x is denoted by Np
S(x).
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Definition 2.7. (Weak invariance).
Let Γ : RN  RN be a set-valued map. Let S ⊆ RN be a closed set. We say that
(S,Γ) is weakly invariant provided that for x ∈ S and t ∈ [0, T ], there exists y(.) a
solution of (DI)Γ(t, x) such that y(τ) ∈ S for all τ in [t, T ].

Definition 2.8. (Strong invariance).
Let Γ : RN  RN be a set-valued map. Let S ⊆ RN be a closed set. We say
that (S,Γ) is strongly invariant provided that for x ∈ S, t ∈ [0, T ] and every y(.) a
solution of (DI)Γ(t, x), we have y(τ) ∈ S for all τ in [t, T ].

Theorem 2.11. Assume (H1), (SH) and (HD). Let S be a closed set of RN . We
denote by Si :=Mi ∩ S. The following assertions are equivalent:

• (i) (S, F ) is weakly invariant;

• (ii) ∀x ∈ S, ∃ i ∈ I(x) : ∀ηi ∈ Np
Si

(x), HFi(x, ηi) ≥ 0;

• (iii) ∀x ∈ S, ∃ i ∈ I(x) : ∀ηi ∈ Np
Si

(x), HF ]i
(x, ηi) ≥ 0.

Theorem 2.12. Assume (H1), (SH) and (HD). Let S be a closed set of RN . We
denote by Si :=Mi ∩ S. The following assertions are equivalent:

• (i) (S, F ) is strongly invariant;

• (ii) ∀x ∈ S, ∀i ∈ I(x), ∀ηi ∈ Np
Si

(x), HF ]i
(x,−ηi) ≤ 0.

The complete proofs of Theorems 2.11 and 2.12 are given in Section 2.7.3.

In [41], the authors tried to establish similar invariance principles in the stratified
case using the essential Hamiltonian. In particular, for the strong invariance prin-
ciple, if we assume that (H1), (SH) and (HD) hold, [41, Theorem 5.1] states that
(S, F ) is strongly invariant for some closed set S ⊆ RN if and only if

∀x ∈ S, ∀ξ ∈ Np
S, HF ](x,−ξ) ≤ 0. (2.14)

However, the sufficient implication fails to be true in general. Here is a counterex-
ample.
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NP
S (x̄) = {(0, 0)}x̄ = (0, 0)

R

R

S = {x3
1 ≤ x5

2}

F3(x1, x2) = {−ex2}F2(x1, x2) = {(0, 0)}

F4(x1, x2) = {(0, 0)}F1(x1, x2) = {(0, 0)}

Figure 2.5: Counterexample with a stratification in RN , with N = 2, n = 4 and
l = 5.

We are given a stratification as follows

M1 = {(x1, x2) ∈ R2 : x1 < 0 & x2 > 0} M2 = {(x1, x2) ∈ R2 : x1 < 0 & x2 < 0},

M3 = {(x1, x2) ∈ R2 : x1 > 0 & x2 < 0} M4 = {(x1, x2) ∈ R2 : x1 > 0 & x2 > 0},

M5 = (0,+∞)ex1 M6 = (−∞, 0)ex1 M7 = (0,+∞)ex2 M8 = (−∞, 0)ex2 M9 = {0}.

Take S to be the closed set

S = {(x1, x2) ∈ R2 : x3
1 ≤ x5

2},

represented in red in Figure 2.5 and consider the following dynamics

F1(x1, x2) = F2(x1, x2) = F4(x1, x2) = F5(x1, x2) = {(0, 0)},

F6(x1, x2) = F7(x1, x2) = F9(x1, x2) = {(0, 0)}, F3(x1, x2) = F8(x1, x2) = {−ex2}.

Clearly, (S, F ) is not strongly invariant since F (0, x2) = co{0,−ex2} if y ≤ 0 and
the trajectory

Z̃(s) = (0, t− s) ∈ S(t,T )(0, 0)

is a trajectory of F that starts at x̄ = (0, 0) ∈ S, but Z̃(.) 6⊂ S. On the other hand,
since the proximal normal cone to S at x̄ = (0, 0) is equal to Np

S(x̄) = {(0, 0)}, the
Hamiltonian inequality (2.14) is therefore verified at x̄ = (0, 0). For the remaining
points of S, the Hamiltonian inequality (2.14) is trivially verified since the dynamics
F is reduced to {(0, 0)}. In conclusion, we have shown in this example that the
Hamiltonian inequality

∀x ∈ S, ∀ξ ∈ Np
S, HF ](x,−ξ) ≤ 0,
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is verified for all the points in S. However, (S, F ) is not strongly invariant.

We can also verify that (S, F ) is not strongly invariant using the new characterization
of strong invariance given in Theorem 2.12. Indeed we have

S8 := S ∩M8 = S ∩ (−∞, 0]ex2 = {(0, 0)}.

Therefore, we have that the proximal normal to Si at x̄ := (0, 0) is equal to R2.
Moreover we have F ]

8(x̄) = co{0,−ex2} = [0,−ex2 ]. Thus

HF ]8
(x̄,−Np

S8(x̄)) ≥ 〈−ex2 ,−ex2〉 = 1 > 0.

This shows that the sufficient implication in Theorem 2.12 is not satisfied in this
example.

2.4 Proof of Theorems 2.6 and 2.7.

2.4.1 Optimal control problem and the value function
In this section, we consider the differential inclusion assotiated with the set-valued
map F (.)

(DI)F (t, x) :

 ẏ(s) ∈ F (y(s)), s ∈ [t, T ] a.e.,
y(t) = x.

Since F is u.s.c with nonempty, convex and compact images, then the above differ-
ential inclusion admits Lipschitz solutions for any (t, x) ∈ [0, T ]×RN . Furthermore,
the set of solutions is compact in the topology of uniform convergence [76, Theorem
1, pp 60]. We denote by S(t,T )(x) the set of solutions of the differential inclusion
associated to F (.):

S(t,T )(x) :=

 y(t,x)(.) ∈ W 1,1([t, T ];RN) :

 ẏ(t,x)(s) ∈ F (y(t,x)(s)), s ∈ [t, T ], a.e.,
y(t) = x.

.
We consider the following Mayer optimal control problem defined for (t, x) ∈ [0, T ]×
RN by 

inf ψ(y(t,x)(T ))
such that ẏ(t,x)(s) ∈ F (y(t,x)(s)), s ∈ [t, T ], a.e.,

y(t,x)(t) = x,
(2.15)

where the infimum is taken over all trajectories y(t,x)(.) ∈ S(t,T )(x) and it is reached.
Next, we consider the value function associated to the optimal control problem
defined on (t, x) ∈ [0, T ]× RN by

ϑ(t, x) = inf{ ψ(y(t,x)(T )) , y(t,x)(.) ∈ S(t,T )(x) }.

We now proceed to define some properties of the value function.
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Definition 2.9. Let u : (0, T ]× RN → R be a function. u is said to enjoy

• the super-optimality property if for all (t, x) ∈ (0, T ] ∈ RN , there exists
y(t,x)(.) ∈ S(t,T )(x) such that

u(t, y(t,x)(t)) ≥ u(s, y(t,x)(s)), ∀s ∈ [t, T ];

• the sub-optimality property if for all (t, x) ∈ (0, T ] ∈ RN , for all y(t,x)(.) ∈
S(t,T )(x) we have

u(t, y(t,x)(t)) ≤ u(s, y(t,x)(s)), ∀s ∈ [t, T ].

As in the classical case, the value function ϑ satisfies the Dynamic programming
principle, which corresponds to the super-optimality and the sub-optimality prop-
erties.

Proposition 2.12.1. ([18, Proposition 3.1]). Assume (H1) and (Hψ). Then the
value function satisfies the super-optimality and the sub-optimality properties.

The next proposition states that the controllability hypothesis (CH) is a sufficient
condition to ensure that the value function is locally Lipschitz continuous.

Proposition 2.12.2. Suppose (H1), (CH) and (Hψ) hold. Then, ϑ : [0, T ] ×
RN −→ R is locally Lipschitz continuous.

Proof. From the controllability assumption (CH), there exists a neighborhood of
Λ (the interfaces), denoted by V := Λ + εB, and there exists r > 0, such that for all
x ∈ V , we have rB ⊂ F (x).
First, we prove that ϑ(t, .) is locally Lipschitz. Let x, z ∈ RN . Suppose that x, z ∈ V .
LetM be the local supremum bound of F and Lψ the Lipschitz constant of the final
cost ψ. Without loss of generality, we suppose ϑ(t, x) ≥ ϑ(t, z).
Let yt,z(.) ∈ S(t,T )(z) such that ϑ(t, z) = ψ(yt,z(T )). Set

h = | x− z |
r

and ξ(s) = x+ r
z − x
| x− z |

(s− t) for s ∈ [t, t+ h].

We define :
ỹ(s) =

{
ξ(s) for s ∈ [t, t+ h]
yt,z(s− h) for s ∈ [t+ h, T ]

It is easy to see that ỹ(.) is an F -trajectory. So we get

ϑ(t, x)− ϑ(t, z) ≤ ψ(ỹ(T ))− ψ(yt,z(T ))
≤ Lψ|ỹ(T )− yt,z(T )|
= Lψ|yt,z(T − h)− yt,z(T )|

≤ LψMh = Lψ
M

r
|x− z|.
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Suppose now for example z /∈ V (we can do the same reasoning on x instead). Then
by taking x and z close enough to each other, there exists i ∈ {1, ..., n} such that
x, z ∈Mi. Let yt,z(.) ∈ S(t,T )(z) such that ϑ(t, z) = ψ(yt,z(T )).
Suppose yt,z(.) crosses the boundary ofMi. Let t0 ∈ [t, T ] be such that

yt,z([t, t0]) ⊂Mi, and yt,z(t0) ∈ V.

Let yt,x(.) ∈ S(t,T )(x) such that yt,x([t, t0]) ⊂Mi. We have

|yt,x(t0)− yt,z(t0)|≤ eMt0|x− z|≤ eMT |x− z|

Since they are both Fi-trajectories, see [77, Theorem 4.3.11]. Furthermore, we can
also suppose that

yt,x(t0) ∈ V ∩Mi.

We can always find such a trajectory when x and z are close enough and yt,z(t0) ∈ V .

Set h = | yt,z(t0)− yt,x(t0) |
r

and ξ(s) = yt,x(t0) + r
yt,z(t0)− yt,x(t0)
| yt,z(t0)− yt,x(t0) |(s − t0) for

s ∈ [t0, t0 + h]. We define

ỹ(s) =


yt,x(s) for s ∈ [t, t0]
ξ(s) for s ∈ [t0, t0 + h]
yt,z(s− h) for s ∈ [t0 + h, T ]

It is easy to see that ỹ(.) is an F -trajectory. So we get

ϑ(t, x)− ϑ(t, z) ≤ ψ(ỹ(T ))− ψ(yt,z(T )) ≤ Lψ|ỹ(T )− yt,z(T )| = Lψ|yt,z(T − h)− yt,z(T )|
≤ LψMh

= Lψ
M

r
|yt,z(t0)− yt,x(t0)|,

≤ Lψe
MTM

r
|x− z|.

If the trajectory yt,z(.) does not cross the boundary of Mi, then, it is an Fi -
trajectory. Furthermore, we can always find a F -trajectory yt,x(.) that stays inMi

by the controllability assumption. Indeed one can always choose a trajectory with
zero velocity once it reaches the neighborhood V . So yt,x(.) is also an Fi-trajectory.
Hence the result follows again from the classical case, see [77, theorem 4.3.11].
This finishes the proof of ϑ(t, .) is locally Lipschitz.

Now we prove that ϑ is locally Lipschitz w.r.t the time variable. Let x ∈ RN .
Let t, s ∈ [0, T ] such that t < s. By the super-optimality property, there exists
y(.) ∈ S(t,T )(x) such that ϑ(t, x) = ϑ(s, y(s)). Then

|ϑ(t, x)− ϑ(s, x)| = |ϑ(s, y(s))− ϑ(s, x)| ≤ |ϑ(s, y(s))− ϑ(s, y(t))|.

Since both ϑ(s, .) and y(.) are locally Lipschitz, then from the expression above,
ϑ(., x) is locally Lipschitz. This ends the proof. �
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The next proposition shows that F -trajectories are the same as F ]-trajectories.
This implies that the essential dynamics completely characterize the optimal control
problem 2.15.

Proposition 2.12.3. ([41, Proposition 2.1]).
Let (t, x) ∈ [0, T ] × RN and let y : [t, T ] → RN be an absolutely continuous arc.
Then the following statements are equivalent.

• (i) y(.) verifies  ẏ(s) ∈ F (y(s)), s ∈ [t, T ] a.e.,
y(t) = x.

• (ii) y(.) verifies  ẏ(s) ∈ F ](y(s)), s ∈ [t, T ] a.e.,
y(t) = x.

• (iii) For each k ∈ {1, ..., n+ l}, y(.) satisfies y(t) = x and

ẏ(s) ∈ F ]
k(y(s)), s ∈ [t, T ] a.e., whenever y(s) ∈Mk.

Proof. It is clear that the implications (iii) =⇒ (ii) =⇒ (i) are immediately verified
since Fk(.) ⊆ F ](.) ⊆ F (.) on eachMk.
Now, suppose (i) is verified and let us show that it implies (iii). Let y(.) ∈ S(t,T )(x).
For k ∈ {1, ..., n+ l}, let

Jk := {s ∈ [t, T ] : y(s) ∈Mk}.

Suppose that L (Jk) > 0, with L being the Lebesgue measure on R. We set

J̃k := {s ∈ Jk : ẏ(s) exists in F (y(s)) and s is a Lebesgue point of Jk}.

Clearly L (Jk) = L (J̃k). Let s ∈ J̃k. Since s is a Lebesgue point, then there exists
a sequence (sn)n ⊂ Jk such that sn → s and sn 6= s for all n. Since y(sn) ∈Mk, we
have

ẏ(s) = lim
sn→s

y(sn)− y(s)
sn − s

∈ TMk
(y(s)) = F ]

k(y(s)).

Therefore, we get
ẏ(s) ∈ F (y(s)) ∩ TMk

(y(s)),
which is the required result. �

The above proposition shows in particular that the optimal control problem could
be defined using F or F ] or F ]

i , i = 1, . . . , n + l. The latter dynamics are more
suitable to our setting since it gives us the link with the HJB equation (2.7) we
want to solve.
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2.4.2 The super-optimality and supersolution property
In this section, we characterize functions that are supersolutions of equation (2.7)
with the super-optimality property (Definition 2.9). The characterization using the
Hamiltonian HF is standard in the literature since the set-valued map F satisfies
the usual hypotheses (upper semi-continuity with nonempty, convex and compact
images). In here, we will prove a more general result. We show that supersolutions
are characterized using the Hamiltonians HF ]i

, i = 1, . . . , n+ l, in the viscosity sense
given in Definition 2.1. We recall that for a l.s.c function u : (0, T ]× RN → R and
i = 1, . . . , n+ l, we define the function ui : (0, T ]× RN → R ∪ {+∞} by

ui ≡ u onMi and ui ≡ +∞ elsewhere.

Theorem 2.13. Suppose (H1), (SH) and (HD) hold. Let u : (0, T ] × RN → R be
l.s.c. The following assertions are equivalent:

• (i) u is a supersolution of (2.7) in the sense of Definition 2.1,

• (ii) u satisfies the super-optimality property.

Proof. The fact that (i) is equivalent to

− θ +HF (x, ξ) ≥ 0 ∀(θ, ξ) ∈ D−u(t, x), (2.16)

is well known since F (.) is u.s.c with nonempty, convex and compact images. For
more on this, see [18, Proposition 3.5] or [9, Chapter 19].
Moreover, it is obvious from this that (i) =⇒ (ii) sinceHF ]i

(., .) ≤ HFi(., .) ≤ HF (., .)
and D−u(., .) ⊂ D−ui(., .), for all i ∈ [1, n+ l].
It remains to prove (ii) =⇒ (i). Let y(.) : [t, T ] → RN be a trajectory solution
of (DI)F (t, x) such that the super-optimality property holds in y(.). We claim the
following.
Claim: there exists j ∈ I(x) such that there exists a sequence (tn)n, tn ↓ t and
xn := y(tn) ∈Mj, so that xn − x

tn − t
→ ν and ν ∈ F ]

j (x).

Deferring the proof of the claim, let φ ∈ C1((0, T ) × RN) such that uj − φ attains
a local minimum at (t, x) in (0, T ) ×Mj. For n big enough the super-optimality
property gives

uj(t, x)− uj(tn, xn) ≥ 0.

This inequality combined with the fact that uj(tn, xn)−φ(tn, xn) ≥ uj(t, x)−φ(t, x)
lead to

1
tn − t

(φ(t, x)− φ(tn, xn)) ≥ 0.
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By letting n tend to +∞, we obtain

−∂tφ(t, x)− 〈ν, ∂xφ(t, x)〉 ≥ 0

and then

−∂tφ(t, x) +HF ]j
(x, ∂xφ(t, x)) ≥ −∂tφ(t, x)− 〈ν, ∂xφ(t, x)〉 ≥ 0.

This concludes the proof.
Now we turn our attention to the proof of the claim. We distinguish two cases:
either there exists r > 0 such that y([t, t + r]) stays in one domain Mj for some
j ∈ {1, . . . , n} ∩ I(x), almost everywhere, or it touches or crosses the singular set Λ
infinitely many times no matter how we are close to x.
We begin with the first case. Suppose there exists r > 0 such that y([t, t+ r]) ⊂Mj

for some j ∈ {1, . . . , n} ∩ I(x) almost everywhere. So, there exists a sequence (tn)n,
tn ↓ t and xn := y(tn) ∈Mj, such that xn − x

tn − t
→ ν.

Notice that ν = lim
n→+∞

xn − x
tn − t

∈ TMj
(x), since xn ∈ Mj. It remains to prove that

ν belongs to Fj(x). Denote by κ and M respectively the Lipschitz constant of Fj(.)
and the Lipschitz constant of y(.). We have

ν = lim
n→+∞

1
tn − t

ˆ
[t,tn]

ẏ(s) ds

∈ lim
n→+∞

( 1
tn − t

ˆ
[t,tn]

projFj(x)(ẏ(s)) ds+ κ

tn − t

ˆ
[t,tn]
|y(s)− x|B ds

)
⊆ lim

n→+∞

(
Fj(x) + κM

tn − t
[ˆ

[t,tn]
(s− t) ds

]
B
)

⊆ lim
n→+∞

(
Fj(x) + κM

|tn − t|
2 B

)
= Fj(x).

In conclusion, we get ν ∈ Fj(x) ∩ TMj
(x) = F ]

j (x).
Now we get to the second case. Since y(.) touches or crosses Λ infinitely many times
no matter how we are close to x, then there exists j ∈ {n + 1, . . . , n + l} ∩ I(x), a
sequence (tn)n, tn ↓ t and xn := y(tn) ∈Mj, so that xn − x

tn − t
→ ν.

Notice that ν = lim
n→+∞

xn − x
tn − t

∈ TMj
(x), since xn ∈Mj. It remains to prove that ν

belongs to Fj(x). For k = 1, . . . , n+ l, we set

Jkn := { s ∈ [t, t+tn] : y(s) ∈Mk }, µkn := L (Jkn), K(x) := {k : µkn > 0, ∀n ∈ N},

where we recall that L is the Lebesgue measure on R. We obviously have K(x) ⊂
I(x). Furthermore, up to a subsequence, there exist 0 ≤ λk ≤ 1 and pk ∈ RN such



Chapter 2. A general comparison principle for Hamilton Jacobi
Bellman equations in stratified domains 56

that
µkn

tn − t
→ λk,

∑
k∈K(x)

λk = 1, 1
µkn

ˆ
Jkn

ẏ(s)ds→ pk, as n→∞.

Denote by κ and M respectively the Lipschitz constant of Fk(.) and the Lipschitz
constant of y(.), we get

pk = lim
n→+∞

1
µkn

ˆ
Jkn

ẏ(s) ds

∈ lim
n→+∞

( 1
µkn

ˆ
Jkn

projFk(x)(ẏ(s)) ds+ κ

µkn

ˆ
Jkn

|y(s)− x|B ds
)

⊆ lim
n→+∞

(
Fk(x) + κM

µkn

[ ˆ
Jkn

(s− t) ds
]
B
)

⊆ lim
n→+∞

(
Fk(x) + κM |tn − t|B

)
= Fk(x).

Therefore, we have

ν = lim
n→+∞

1
tn − t

ˆ
[t,tn]

ẏ(s) ds =
∑

k∈K(x)
lim

n→+∞

µkn
tn − t

 1
µkn

ˆ
Jkn

ẏ(s) ds


⊂ co {Fk(x) : k ∈ K(x)}.

Finally, we get

ν ∈ co
{
Fk(x) : k ∈ K(x)

}
∩ TMj

(x) ⊂ co
{
Fk(x) : k ∈ I(x)

}
∩ TMj

(x) = F ]
j (x).

This ends the proof of the claim. �

Remark 2.4.1. By the arguments presented at the beginning of the above proof,
it is easy to see that under the same assumptions of Theorem 2.13, the following
statements are equivalent:

• u satisfies the super-optimality property,

• u is a supersolution of (2.7) in the sense of Definition 2.1,

• u is a supersolution of (2.6) in the sense of Definition 2.1,

• u verifies inequality (2.16).

Remark 2.4.2. It was already known from [18], that inequality (2.16) is equivalent
to the super-optimality property if we only use the classical definition of viscosity.
The importance of this result lies in the fact that the equivalence is valid even if we
take the notion of viscosity stated in Definition 2.1.



57 2.4. Proof of Theorems 2.6 and 2.7.

2.4.3 The sub-optimality and subsolution property
This section aims at establishing the link between the sub-optimality property and
the the subsolution property of the HJB equation (2.7). The subsolution property is
characterized by the Hamiltonians associated to the dynamics F ]

i , which represent
the velocities that are taken by the trajectories of the controlled system (DI)F (t, x).
The importance of the essential dynamics are displayed in the following result, where
its proof can be found in [18, Lemma 3.9].

Lemma 2.14. Let i ∈ {1, . . . , n+ l} and let x ∈Mi. Then for any p ∈ F ]
i (x), there

exists t, τ ∈ R with t < τ < T and a trajectory y(.) ∈ S(t,T )(x) such that it is C1 on
[t, τ ], ẏ(t) = p and y([t, τ ]) ⊂Mi.

Theorem 2.15. Suppose that (H1), (SH), (HD) and (HESS) are verified. Let u :
[0, T ]× RN → R be an u.s.c function. The following assertions are equivalent:

• (i) u satisfies the sub-optimality principle,

• (ii) u is a subsolution of the HJB equation (2.7).

Proof. We prove (i) =⇒ (ii) first. Let i ∈ {1, ..., n+ l} and (t, x) ∈ [0, T ]×Mi. By
Lemma 2.14, for every p ∈ F ]

i (x), there exists a C1 trajectory y(.) defined on some
interval [t, t+ ε], with ε > 0, such that y(t) = x, ẏ(t) = p and y(.) ⊆Mi.
Let ui ≡ u on Mi and ui ≡ −∞ otherwise. Let (θ, ξ) be in D+ui(t, x). For any
sequence ((tn, xn))n such that (tn, xn) ∈ dom(ui) and (tn, xn)→ (t, x), we have

lim sup
n→∞

u(tn, xn)− u(t, x)− θ(tn − t)− 〈ξ, xn − x〉
|xn − x|+ |tn − t|

≤ 0.

Setting xn = y(t+ ε

n
) and tn := t+ ε

n
, we get by sub-optimality of u

−θ(tn − t)− 〈ξ, xn − x〉
|xn − x|+ |tn − t|

≤ u(tn, xn)− u(t, x)− θ(tn − t)− 〈ξ, xn − x〉
|xn − x|+ |tn − t|

,

By letting n→∞ we get

−θ − 〈ξ, p〉
|p|+ 1 ≤ 0 =⇒ −θ − 〈ξ, p〉 ≤ 0.

Since p is arbitrary, we get the result by taking the supremum over F ]
i (x).

It remains to prove (ii) =⇒ (i). We define the augmented stratification by

Mi := R×Mi × R.

Furthermore, for all i = 1, ..., n + l, we define v := −u (so v is l.s.c) and we denote
by vi ≡ v onMi and vi ≡ +∞ otherwise. Next, we divide the proof into 2 steps.
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Step 1.. We show that

∀i ∈ {1, ..., n+ l}, epi(vi) = epi(v) ∩M i.

Let (t, x, r) ∈ epi(vi). So vi(t, x) ≤ r. Hence x ∈ Mi and v(t, x) ≤ r. Thus we get

(t, x, r) ∈ epi(v) ∩M i. Conversely, if (t, x, r) ∈ epi(v) ∩M i, then v(t, x) ≤ r and
x ∈Mi. So vi(t, x) = v(t, x), whence vi(t, x) ≤ r, which finishes the proof of step 1.

Step 2. (Augmented dynamics). Let us first point out the fact that assertion (ii)
is equivalent to

−θ +HF ]i
(x, ν) ≤ 0 for all (t, x) ∈ (0, T )×Mi, (θ, ν) ∈ −D−vi(t, x),

since D+ui(t, x) = −D−(−ui)(t, x) = −D−vi(t, x).
We establish the following claim.

Claim. Let G]
i be the augmented dynamics defined by

G]
i(t, x, z) := {1} × F ]

i (x)× {0}, for any (t, x, z) ∈M i.

If we have

−θ +HF ]i
(x, ν) ≤ 0 for all (t, x) ∈ (0, T )×Mi, (θ, ν) ∈ −D−vi(t, x),

Then it holds

sup
ν∈G]i(t,x,z)

{ 〈η, ν〉 } ≤ 0 ∀(t, x, z) ∈ epi(vi), η ∈ Np
epi(vi)(t, x, z). (2.17)

Let (t, x, z) ∈ epi(vi). If F ]
i (x) = ∅ then the result holds by vacuity. Otherwise, let

(ξ,−λ) ∈ Np
epi(vi)(t, x, z). So we have λ ≥ 0 because (ξ,−λ) belongs to the proximal

normal cone of the epigraph of vi. If λ > 0. Then we have z = vi(t, x) and there
exists (θ, ζ) ∈ −∂pvi(t, x) ⊂ −D−vi(t, x) such that ξ = (−λθ,−λζ). Hence, by [9,
Theorem 11.32], for any ν ∈ G]

i(t, x, z) we have, for some p ∈ F ]
i (x):

〈(ξ,−λ), ν〉 = −λ(θ + 〈ζ, p〉) ≤ λ(−θ +HF ]i
(x, ζ)) ≤ 0

We take the supremum over ν and we get the result. Now, if λ = 0, then by [9,
Theorem 11.31], there exist sequences ((tn, xn))n ⊆ [0, T ] ×Mi, (ξn)n ⊆ RN+1 and
(λn)n ⊆ (0,∞) such that

(tn, xn, λn)→ (t, x, 0), v(tn, xn)→ z ξn → ξ,
1
λn
ξn ∈ −∂pvi(tn, xn).

Thus the argument above shows that

〈(ξn,−λn), νn〉 ≤ 0 ∀νn ∈ G]
i(tn, xn, ui(tn, xn)), ∀n ∈ N.
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Furthermore, by Hypothesis (HESS) we have that G]
i(.) is lower semicontinuous.

So for any ν ∈ G]
i(t, x, z), there exists a sequence (νn)n → ν such that νn ∈

G]
i(tn, xn, vi(tn, xn)). By evaluating the last inequality at this sequence and letting

n→ +∞, then taking the supremum over ν, we get the result.

Consequently, since equation (2.17) holds from (ii), then We can apply Theorem
2.12 to the augmented dynamics G(.) := {1}×F (.)×{0}, the stratification RN+2 =
∪n+l
i=1Mi and the set S = epi(v). Thus we get that (epi(v), G) is strongly invariant.

Let (t, x) ∈ (0, T )× RN and y(.) be a solution of (DI)F (t, x). So we have that

Y (s) = (s, y(s), v(t, y(t)) s ∈ [t, T ],

is a solution of the differential inclusion with the augmented dynamics G(.) and
initial condition (t, x, v(t, x)) = (t, y(t), v(t, y(t)))
we have (t, y(t), v(t, y(t)) ∈ epi(v). Thus, by Theorem 2.12, we get

(t+ h, y(t+ h), v(t, y(t)) ∈ epi(v)

for all h ∈ [0, T − t]. Hence

v(t+ h, y(t+ h)) ≤ v(t, y(t))⇐⇒ u(t, y(t)) ≤ u(t+ h, y(t+ h)) (since u = −v).

This ends the proof of (ii) =⇒ (i) and Theorem 2.15. �

2.4.4 Proof of Theorems 2.6 and 2.7.
Proof. (Theorem 2.6). Proposition 2.12.2 shows that the value function ϑ is locally
Lipschitz continuous. Furthermore, we have ϑ(T, x) = ψ(x). Theorem 2.13 shows
that ϑ is a viscosity supersolution since it enjoys the super-optimality property. In
addition, Theorem 2.15 shows that ϑ is a viscosity subsolution since it enjoys the
sub-optimality property. Finally, uniqueness comes from the comparison result in
Theorem 2.7. �

Remark 2.4.3. Notice that assumption (CH) is only used to ensure that the value
function is continuous. If we directly assume that the value function is continuous
instead of assuming (CH), then the conclusion of Theorem 2.6 is still valid.

Proof. (Theorem 2.7). Let u1 and u2 respectively be a l.s.c supersolution and an
u.s.c subsolution of equation (2.7). By Theorem 2.13, we conclude that u1 satisfies
the super-optimality principle which means that for all (t, x) ∈ (0, T ] × RN , there
exists a trajectory y(.) ∈ S(t,T )(x) such that

u1(t, x) ≥ u1(T, y(T )).

Likewise, by Theorem 2.15, we conclude that u2 satisfies the sub-optimality principle.
Hence, we get that for the same trajectory y(.) we have

∀ (t, x) ∈ (0, T ]× RN , u2(t, x) ≤ u2(T, y(T )).
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Therefore, using the fact that u2(T, ·) ≤ u1(T, ·), we get

u2(t, x) ≤ u1(t, x) for any (t, x) ∈ (0, T ]× RN ,

which is the required result. �

2.5 Stability

Theorem 2.16. For i = 1, . . . , n + l, let
(
F j
i : Mi  RN

)
j
be a sequence of set-

valued maps satisfying (SH) and such that F j
i −→ Fi w.r.t the Hausdorff metric

(i.e. uniform convergence). Let (vj : RN → R)j be a sequence of l.s.c functions
such that vj → v locally uniformly in RN . Suppose in addition that for all j, vj is
a supersolution of

−∂tvj(t, x) + max
i∈I(x)

{HF j]i
(x, ∂xvj(t, x)) } = 0 for all (t, x) ∈ (0, T )× RN ,

in the sense of Definition 2.1. Then v is a supersolution of (2.7).

Proof. Let (t, x) ∈ (0, T ) × RN . Using Remark 2.4.1, it suffices to prove that v
satisfies the inequality (2.16). Let φ ∈ C1((0, T ) × RN) such that u − φ attains a
local minimum at (t, x). Then, there exists (tj, xj) ∈ (0, T ) × RN such that vj − φ
attains local minimum and such that (tj, xj) → (t, x). Since the stratification is
finite and vj is a supersolution of (2.7), then up to a subsequence (not relabelled),
there exists i0 ∈ [1, n+ l] such that for all j, we have

−∂tφ(tj, xj) +HF j]i0
(xj, ∂xφ(tj, xj)) ≥ 0.

Since F j]
i0 (.) ⊆ F j

i0(.), we get

−∂tφ(tj, xj) +HF ji0
(xj, ∂xφ(tj, xj)) ≥ 0.

So by letting j tend to infinity, we get

−∂tφ(t, x) +HFi0
(x, ∂xφ(t, x)) ≥ 0.

Finally, since Fi0(.) ⊆ F (.), then we get

−∂tφ(t, x) +HF (x, ∂xφ(t, x)) ≥ 0,

which is the required result by Remark 2.4.1. �

Theorem 2.17. For i = 1, ..., n+l, let
(
F j
i :Mi  RN

)
j
be a sequence of set-valued

maps satisfying (SH). We denote By

F j]
i (.) = F j

i (.) ∩ TMi
(.).
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Suppose that F j]
i −→ F ]

i w.r.t the Hausdorff metric. Let (vj : RN → R)j be a
sequence of u.s.c functions such that vj → v locally uniformly in RN . Suppose in
addition that for all j ∈ N, vj is a subsolution of

−∂tvj(t, x) +HF j]i
(x, ∂xvj(t, x)) = 0 for all (t, x) ∈ (0, T )× RN , i ∈ I(x),

in the sense of definition 2.2. Then v is a subsolution of (2.7).

Proof. Let (t, x) ∈ (0, T ) × RN and i ∈ I(x). Let φ ∈ C1((0, T ) × RN), such that
u− φ attains a local maximum in (0, T )×Mi, at (t, x). Without loss of generality,
we can always suppose that the maximum is strict. Then by [4, Lemma 2.2] there
exists (tj, xj) ∈ (0, T )×Mi, such that vj −φ attains local maximum in (0, T )×Mi

at (tj, xj), and such that (tj, xj)→ (t, x). Since vj is a subsolution, we get

−∂tφ(tj, xj) +HF j]i
(xj, ∂xφ(tj, xj)) ≤ 0.

Now let ν ∈ F ]
i (x). Then by the Hausdorff convergence of the sequence (F j]

i )j there
exists a sequence νj ∈ F j]

i (xj) such that νj → ν. Finally, we arrive at

−∂tφ(tj, xj) + 〈−νj, ∂xφ(tj, xj)〉 ≤ −∂tφ(tj, xj) +HF j]i
(xj, ∂xφ(tj, xj)) ≤ 0.

By letting j tend to infinity, we get

−∂tφ(t, x) + 〈−ν, ∂xφ(t, x)〉 ≤ 0.

Lastly, since ν is arbitray, we take the supremum over ν and we get the required
result. �

2.6 General convergence result for monotone schemes

In this section, we aim at studying the convergence of monotone numerical schemes
approximating the HJB equation (2.7).

Let G∆x =
n+l⋃
i=1
G∆x
i be a spatial grid of RN of step ∆x > 0, such that each G∆x

i is

a subgrid ofMi and G∆x is compatible with the stratification (Mi)i=1,...,n+l in the
following sense:

(CC):


(i) For all i, j = 1, ..., n+ l, such thatMj ⊂Mi, G∆x

i and G∆x
j coincide on G∆x

j ,

(ii) ∀R > 0, ∀i = 1, ..., n+ l, lim
∆x→0

dH

(
Mi ∩ B(0, R) , G∆x

i ∩ B(0, R)
)

= 0.
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Comments on the hypothesis (CC)

Hypothesis (CC)(i) implies that the grid G∆x is divided into n+l subgrids (G∆x
i )i with

a partial order relation that ensures compatibility with the stratification. Hypothesis
(CC)(ii) asserts that for each i = 1, . . . , n + l, the subgrid G∆x

i approaches Mi in
the the sense of Hausdorff convergence. Notice that this implies in particular that
the points of a subgrid G∆x

i don’t have to belong to Mi meaning that we do not
require that

G∆x
i ⊂Mi.

What is important here is that the grid G∆x is divided into n+ l subgrids compatible
with the stratification, and each subgrid converges in the Hausdorff sense to its
corresponding domain.

We define for any x ∈ G∆x, the index set-valued map of the grid

IG∆x(x) := { i ∈ {1, ..., n+ l} : x ∈ G∆x
i }.

Let ∆t be a constant time step of a regular grid Π∆t of [0, T ]. We denote h =
(∆t,∆x). We consider the following numerical scheme:

max
i∈IG∆x (xh)

{Shi (th, xh, uh(th, xh), [uh](th,xh)) } = 0 for (th, xh) ∈ (Π∆t × G∆x) \ {th = T},

uh(T, xh) = ψ(xh), for (th, xh) ∈ (Π∆t × G∆x) ∩ {th = T},

with uh : Π∆t×G∆x → R is the approximate solution and [uh](th,xh) are all the values
of of uh on G∆x at other points than (th, xh). Each Shi , i = 1, . . . , n+ l, is supposed
to verify the following hypotheses:

• Monotonicity : Shi (s, z, u, [w1]h(s,z)) ≤ Shi (s, z, u, [w2]h(s,z)), if w1 ≥ w2.

• Stability :

– each uh is bounded on bounded sets of RN independently from h, for h
small enough, i.e. for all ρ > 0, there exists a Cρ > 0, independent of h,
such that

|uh(thi , xhi )| ≤ Cρ if (thi , xhi ) ∈
(

[0, T ]× B(0, ρ)
)
∩
(

Π∆t × G∆x
)
.

– uh verifies the following inequality on a neighborhood of the interfaces:
there exists r > 0 and Cr > 0, independent of h, such that

|uh(th, xh)− uh(sh, yh)| ≤ Cr(|th − sh|+ |xh − yh|),

for all (th, xh), (sh, yh) ∈
(

[0, T ]× (Λ + B(0, r))
)
∩
(

Π∆t × G∆x
)
.
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• Consistency : for all φ ∈ C1((0, T )× RN) and (t, x) ∈ (0, T )× RN , we have

lim inf
Π∆t×G∆x

i 3(s,z)→(t,x)
h→0
ζ→0

Shi (s, z, φ(s, z)+ζ, [φ+ζ]h(s,z)) ≥ −∂tφ(t, x)+HF ]i
(x, ∂xφ(t, x)),

lim sup
Π∆t×G∆x

i 3(s,z)→(t,x)
h→0
ζ→0

Shi (s, z, φ(s, z)+ζ, [φ+ζ]h(s,z)) ≤ −∂tφ(t, x)+HF (x, ∂xφ(t, x)).

The following theorem is an extension of the result by Barles and Souganidis [47],
to the case of HJB equations defined on stratified domains.

Theorem 2.18. Suppose that the HJB equation (2.7) admits a continuous viscosity
solution u and the comparison principle in Theorem 2.7 holds. Assume that for
every h > 0 small enough, the numerical scheme admits a solution uh. Assume
further that the spatial grid verifies hypothesis (CC) and that each Shi verifies the
monotonicity, stability and consistency hypotheses.

then, uh converges locally uniformly to u.

Proof. First, we begin by defining the following functions

u(t, x) := lim sup
Π∆t×G∆x3(s,z)→(t,x)

h→0

uh(s, z), u(t, x) := lim inf
Π∆t×G∆x3(s,z)→(t,x)

h→0

uh(s, z).

We aim to prove that
u = u = u.

We already have u ≤ u. Therefore to prove our result It suffices to prove that u is a
l.s.c supersolution and u is an u.s.c subsolution of the HJB equation (2.7). We first
prove that u is a subsolution.

Let (t, x) ∈ (0, T )×RN . Without loss of generality, we suppose that x ∈ B(0, ρ) for
some ρ > 0 big enough and we restrict our analysis on this bounded open set. Let
i ∈ I(x) and let φ ∈ C1((0, T )×RN) such that ui − φ attains its local maximum at
(t, x) ∈ (0, T )×Mi. We recall that ūi = u in (0, T )×Mi and ui ≡ −∞ otherwise.

Without loss of generality, we can suppose that

ui(t, x) = φ(t, x), ui(s, z) < φ(s, z) if (s, z) 6= (t, x),

φ ≥ Cρ + 1 outside of a neighborhood Ω of (t, x), and Ω ( (0, T )× B(0, ρ),
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where Cρ is defined from the first part of the stability assumption. Furthermore,
from the second part of the stability assumption, u is Lipschitz continuous in a
neighborhood of the interfaces. So we get

0 = ui(t, x)−φ(t, x) = lim sup
Π∆t×G∆x3(s,z)→(t,x)

h→0

uh(s, z)−φ(s, z) = lim sup
Π∆t×G∆x

i 3(s,z)→(t,x)
h→0

uh(s, z)−φ(s, z).

The second part of the stability assumption is essential here to get the last equality
since the limit sup might not be reached from every subsgrid G∆x

i . Moreover, outside
of Ω, we have ui − φ ≤ −1. So, there exists r > 0, such that

0 ≥ uh(s, z)−φ(s, z) ≥ −1 for all (s, z) ∈ ([t− r, t+ r]∩Π∆t)× (B(0, r)∩G∆x
i ) ⊂ Ω.

So, the maximum of uh − φ is attained in the compact set

([t− r, t+ r] ∩ Π∆t)× (B(0, r) ∩ G∆x
i ) ⊂ Ω.

Let (thi , xhi ) be the maximum and let (ti, xi) be the limit when h→ 0 of a subsequence
not relabelled. we have

lim
h→0

uh(thi , xhi )−φ(thi , xhi ) ≥ lim sup
Π∆t×G∆x

i 3(s,z)→(t,x)
h→0

uh(s, z)−φ(s, z) = ui(t, x)−φ(t, x) = 0.

On the other hand, since ui − φ is u.s.c, we get

0 ≥ ui(ti, xi)− φ(ti, xi) ≥ lim
h→0

uh(thi , xhi )− φ(thi , xhi ).

Thus, we conclude

(ti, xi) = (t, x), uh(thi , xhi )→ ui(t, x).

Let ζh := uh(thi , xhi )− φ(thi , xhi ). We get

uh(thi , xhi ) = φ(thi , xhi ) + ζh, uh(s, z) ≤ φ(s, z) + ζh, (thi , xhi ) 6= (s, z) ∈ Π∆t × G∆x
i .

From the monotonicity of the scheme and uh being a solution, we get

Shi (thi , xhi , uh(thi , xhi ), [φ+ ζh]h(thi ,xhi )) ≤ Shi (thi , xhi , uh(thi , xhi ), [uh](thi ,xhi )) ≤ 0,

and by the consistency hypothesis, by passing to the infimum limit in the above
inequality, we get

−∂tφ(t, x)+HF ]i
(x, ∂xφ(t, x)) ≤ lim inf

(thi ,x
h
i )→(t,x)
h→0
ζh→0

Shi (thi , xhi , φ(thi , xhi )+ζh, [φ+ζh]h(thi ,xhi )) ≤ 0.
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This is true for any i ∈ I(x), which ends the proof.

Now we prove that u is a supersolution. Following Remark 2.4.1, it suffices to prove
that u is a supersolution of (2.16).
Let (t, x) ∈ (0, T )× RN . Let φ ∈ C1((0, T )× RN) such that u− φ attains its local
minimum in (0, T ) × RN at (t, x) and φ(t, x) = u(t, x). Using the same arguments
as in the first part of the proof, we get a sequence (hn)n such that

hn ↓ 0, uhn − φ attains a local maximum at (tn, xn) ∈ Π∆t × G∆x, and

(tn, xn)→ (t, x), uhn(tn, xn)→ u(t, x).
Furthermore, since the stratification is finite and uhn is a solution to the numerical
scheme, there exists a subsequence (not relabelled) of (hn)n such that there exists
i0 ∈ IG∆x(xn), for all n ∈ N and (xn)n ⊆ G∆x

i0 and we have

max
i∈IG∆x (xn)

Shni (tn, xn, uhn(tn, xn), uhn) = Shni0 (tn, xn, uhn(tn, xn), uhn) ≥ 0.

Let ζn := uhn(tn, xn)− φ(tn, xn). So

uhn(tn, xn) = φ(tn, xn) + ζn, uhn(s, z) ≥ φ(s, z) + ζn, (thi , xhi ) 6= (s, z) ∈ Π∆t×G∆x.

From the monotonicity assumption and uhn being a solution, we get

Shni0 (tn, xn, φ(tn, xn) + ζn, [φ+ ζh]hn(thn,xhn)) ≥ Shni0 (tn, xn, uhn(tn, xn), [uhn ]hn(thn,xhn)) ≥ 0.

and by the consistency hypothesis and passing to the supremum limit, we get

−∂tφ(t, x)+HF (x, ∂xφ(t, x)) ≥ lim sup
(tn,xn)→(t,x)

hn→0
ζn→0

Shni0 (tn, xn, φ(tn, xn)+ζn, [φ+ζh]hn(thn,xhn)) ≥ 0.

By Remark 2.4.1, we get the required result.

Finally, with similar arguments as above, we prove that at time t = T , u (resp. u)
is subsolution (resp. supersolution) of

min
(
−∂tu(t, x) + max

i∈I(x)
{HF ]i

(x, ∂xu(t, x)) }, u(T, x)− ψ(x)
)
≤ 0,

resp.

max
(
− ∂tu(t, x) +HF (x, ∂xu(t, x)), u(T, x)− ψ(x)

)
≥ 0,

for (t, x) ∈ (0, T ] × RN . Finally, by the same reasoning as in [4, Theorem 4.7], we
obtain that

u(T, ·) ≤ ψ(.) ≤ u(T, ·).
In conclusion, by Theorem 2.7, we have u = u = u and uh converges locally uniformly
to u, which ends the proof. �
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2.7 Appendices

2.7.1 Relative wedgeness
This section presents the concept of relative wedgeness first introduced in [41]. Let
S ⊂ RN be a closed set. S is said to be proximally smooth if there exists R > 0 such
that the projection map projS(.) is a singleton on the set {x ∈ RN : dS(x) < R }.
If S is proximally smooth, then its Clarke tangent cone is equal to its Bouligand
tangent cone TS(.). It is a known fact that Clarke tangent cone is always closed and
convex [9].
Now, letM be a C2 embedded manifold in RN such thatM is proximally smooth
and let d = dim(M) be its dimension. Then, for every x ∈ M, the tangent cone
TM(x) is closed and convex, hence it has a relative interior (in the sense of convex
analysis), denoted by r-int(TM(x)).
The set M is said to be relatively wedged if for every x ∈ M, the dimension of
r-int(TM(x)) (in the sense of convex analysis) is equal to the dimension ofM:

dim(r-int(TM(x)) = dim(M) = d.

2.7.2 Lower semicontinuity of the essential dynamics
In this section, we give sufficient conditions for Hypothesis (HESS) to hold. For
i = 1, . . . , n+ l, we recall from Section 2.2 that the essential dynamics F ]

i (.) defined
onMi is of the form

F ]
i (x) = Fi(x) ∩ TMi

(x), ∀x ∈Mi.

We suppose that the dynamics Fi(.) verify Hypotheses (SH), (CH) and (HD). Let
(Mi)i=1,...,n+l be a stratification of RN such that anyMi is either vector subspace
of RN or a half space of RN . All stratification of RN given in Examples 2.1, 2.2
and 2.3 verify this condition. Furthermore, it immediately follows that the strati-
fication verifies (H1). If Mi is a vector subspace of RN , then we have Mi = Mi.
Consequently we get

Fi(.) = F ]
i (.), ∀x ∈Mi.

Therefore, F ]
i (.) is locally Lipschitz continuous. Hence it is l.s.c.

Suppose now thatMi is a half space of a vector subspace of RN . For simplicity we
denote the vector subspace by E ⊂ RN . SinceMi is a convex subset of E, then by
[77, Corollary 3.6.13], the set-valued map

Mi 3 x TMi
(x)

is l.s.c as a set-valued map fromMi to E. Furthermore, sinceMi is a half space of
E, then we have

TMi
(x) =Mi, ∀x ∈Mi.



67 2.7. Appendices

Hence, TMi
(x) is convex with nonempty interior in E for all x ∈ Mi. On the other

hand, by Hypotheses (CH) and (HD) the set-valued map x Fi(x) is l.s.c as a set-
valued map fromMi with images in E that are convex and have nonempty interior.
Therefore, following [78, Theorem B], the set-valued map

F ]
i (x) = Fi(x) ∩ TMi

(x)

is l.s.c as a set-valued map fromMi to E. Whence, x F ]
i (x) is l.s.c as a set-valued

map fromMi to RN .

2.7.3 Proof of invariance theorems
Proof. (Theorem 2.11). Since F is an u.s.c set-valued map with convex, compact
and non empty images, and since S is a closed set of RN , it is a known fact that
assertion (i) is equivalent to (see for instance [9, Theorem 12.11])

HF (x, η) ≥ 0 ∀η ∈ Np
S(x), ∀x ∈ RN .

Let x ∈ RN . We have F ]
i (.) ⊆ Fi(.) ⊆ F (.). We have

HFi(x, ηi) ≥ HF ]i
(x, ηi), ∀ηi ∈ Np

Si
(x). (2.18)

From this inequality, we deduce easily the implication (iii) =⇒ (ii). Moreover, since
Np
S(x) ⊆ Np

Si
(x) for all i ∈ I(x), then

HF (x, η) ≥ max
i∈I(x)

HFi(x, η) ≥ max
i∈I(x)

HF ]i
(x, η), ∀η ∈ Np

S(x).

Hence, the implication (ii) =⇒ (i) holds. It remains to prove the implication

(i) =⇒ (iii).

Suppose (S, F ) is weakly invariant. Let x ∈ RN and t ∈ [0, T ]. So there exists a
trajectory y(.) solution of (DI)F (t, x) such that y(.) ⊂ S. We claim the following:
Claim: ∃ j ∈ I(x) such that there exists a sequence (tn)n, tn ↓ t and xn := y(tn) ∈
Mj, so that xn − x

tn − t
→ ν and ν ∈ F ]

j (x).

The proof of the claim is the same as the proof of the same claim in Proposition
2.13. With this claim, we are almost done. Indeed let ηj ∈ Np

Sj
(x) be such that the

proximal normal inequality in Definition 2.6 is satisfied with σ > 0. we get

〈ν, ηj〉 = lim
n→+∞

〈xn − x
tn − t

, ηj
〉
≤ lim

n→+∞

1
2σ(tn − t)

|xn − x|2= 0.

Thus, we have
HF ]j

(x, ηj) ≥ −〈ν, ηj
〉
≥ 0,

Which is the required result. �
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Proof. (Theorem 2.12). The implication (ii) =⇒ (i) is proven first. We separate
the proof into 3 parts. First we prove the result for every trajectory that lies entirely
in one of the domains Mi, i = 1, ..., n + l. Then, we prove the result for every
trajectory that does not present any chattering phenomenon, also known as Zeno
effect, using an induction argument. Finally we prove the result for every trajectory
using Filippov’s theorem [10, Theorem 3.1.6].
Step 1. (Inspired from [9, Theorem 12.15]). Let y(.) be a trajectory of F such
that y((t, T )) ⊂ Mi and such that y(t) = α ∈ S ∩Mi. We show that for some
ε ∈ (0, T − t), we have y([t, t+ ε]) ⊂ S which is sufficient to conclude.
Let r > 0 small enough such that B(α, r) ∩Mi is a relative neighborhood in Mi.
Let κ > 0 be the Lipschitz constant of Fi on B(α, r) and ||Fi||> 0 be an upper bound
for any velocities that my appear in B(α, r). So y(.) is Lipschitz continuous in this
ball. There exists ε ∈ (0, T − t) such that

∀ τ ∈ [t, t+ ε], s ∈ projSi(y(τ)) =⇒ y(τ) ∈ B(α, r) ∩Mi, s ∈ B(α, r) ∩Mi.

We define f(τ) := dSi(y(τ)). f is Lipschitz continuous on [t, t + ε]. We prove the
following Lemma:

Lemma 2.19.
d

dτ
f(τ) = ḟ(τ) ≤ κf(τ) for almost all τ ∈ (t, t+ ε).

Proof. Let τ∗ ∈ (t, t+ε) be such that ḟ(τ∗) exists, ẏ(τ∗) exists and ẏ(τ∗) ∈ Fi(y(τ∗))
(almost all points satisfy those conditions). If f(τ∗) = 0 then f attains a minimum
at τ∗ and therefore ḟ(τ∗) = 0 and the inequality holds. Suppose now f(τ∗) > 0 and
let s ∈ projSi(y(τ∗)). Then by [9, Proposition 11.29] we have

η := y(τ∗)− s
|y(τ∗)− s|

∈ Np
Si

(s).

Since Fi(= F ]
i on Mi) is Lipschitz continuous on B(α, r) with constant κ, there

exists ν ∈ Fi(s) such that

|ẏ(τ∗)− ν|≤ κ|y(τ∗)− s|.

Therefore we get

〈η, ẏ(τ∗)〉 = 〈η, ν〉+ 〈η, ẏ(τ∗)− ν〉 ≤ HF ]i
(s,−η) + κ|y(τ∗)− s|≤ κ|y(τ∗)− s|,

where the last inequality is obtained sinceHF ]i
(s,−η) ≤ 0 by assumption (ii). Hence,

we get

ḟ(τ∗) = lim
δ→0

dSi(y(τ∗ + δ))− dSi(y(τ∗))
δ

≤ lim
δ→0

|y(τ∗ + δ)− s|−|y(τ∗)− s|
δ

= 〈η, ẏ(τ∗)〉 ≤ κ|y(τ∗)− s|= kf(τ∗).

�
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Since f is Lipschitz, positive and f(t) = 0 (y(t) = α ∈ Si), then by using the Lemma
above and Gronwall Lemma [9, Theorem 6.41], we get that f ≡ 0 on [t, t+ ε], which
finishes the proof of step 1.
Notice that, every trajectory that lies entirely in ∪ni=1Mi also verifies Step 1 since
it is a union of pairwise disjoint open sets.

Step 2. LetM be a union of subdomains such that ∪ni=1Mi ⊆ M and denote by
δM the minimum dimension of the subdomains of M. Let Mk0 be a subdomain
such thatMk0 ⊂M\M and its dimension is inferior or equal to δM. We show the
following proposition:

Proposition 2.19.1. If we have (ii) =⇒ (i) for every trajectory that lies entirely
in M or lies entirely in Mk0, then (ii) =⇒ (i) is verified for every trajectory that
lies inM∪Mk0.

Proof. Let y(.) ⊆ M∪Mk0 be a trajectory of F on [t, T ] such that y(t) ∈ S. We
define

J = {τ ∈ [t, T ] : y(τ) /∈Mk0}.

The set J is open sinceMk0 is of inferior dimension thanM, then it is a closed set
relative toM∪Mk0 (equipped with inhereted topology from RN). Thus J can be
written as a countable union of open intervals in the following way:

J =
∞⋃
i=1

(ai, bi),

such that the open sets (ai, bi) are pairwise disjoint and ai < bi ≤ ai+1, ∀i ≥ 1.
Notice that we necessarily have y(ai), y(bi) ∈Mk0 . Set b0 = t. First, we prove that

∀ i ∈ N, y(bi), y(ai+1) ∈ S and y((ai+1, bi+1)) ⊂ S.

We have y(b0) ∈ S by assumption. If b0 = a1 then we have y(a1) ∈ S. If b0 < a1 then
y(b0) ∈ S∩Mk0 and y((b0, a1)) ⊂Mk0 almost everywhere. Hence, by assumption of
the proposition, we have y((b0, a1)) ⊂ S and therefore y(a1) ⊂ S since S is a closed
set. Moreover, since y(a1) ∈ S ∩M and y((a1, b1)) ⊂M, then by assumption of the
proposition, we have that y((a1, b1)) ⊂ S and therefore y(b1) ∈ S since S is closed.
By induction, following the same argument, we get that

∀ i ∈ N, y(bi), y(ai+1) ∈ S and y([ai+1, bi+1]) ⊂ S.

It remains to prove y([t, T ] \J) ⊂ S. If the set J was equal to a finite union of open
intervals then the above argument would have been sufficient to prove that y([t, T ]\
J) ⊂ S. However, this is not the case for all trajectories y(.). The trajectories
y(.) can move in and out ofMk0 infinitely many times exhibiting the phenomenon
known as the Zeno effect, or can reside inMk0 for sets of time that have a strictly
positive Lebesgue measure but are nowhere dense in [t, T ]. To deal with this case,
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we will approximate such trajectories y(.) by ones that behave “nicely”.
We fix m ≥ 1 and set

Jm =
m⋃
k=1

(ak, bk),

Which we can assume to satisfy

t = b0 ≤ a1 < b1 ≤ a2 < b2 ≤ ... ≤ am < bm ≤ am+1 := T.

We choose m large enough such that

L (J \ Jm) < r

2eκT ||F || ,

with κ being the Lipschitz constant of Fk0 and r is equal to

r := inf
w∈Mk0\Mk0

s∈[t,T ]

|y(s)− w|,

(notice that r is strictly positive and can be infinite). The choice of m is made in
such a way to be able to apply the Filippov approximation theorem [10, Theorem
3.1.6] on manifolds (see [41, Remark 3.1]). We will approximate the arc y([bi, ai+1]),
for some i = 0, ...,m, by trajectories that remain entirely in Mk0 . By Filippov
approximation theorem ([10, Theorem 3.1.6]) and [41, Proposition 3.2]), there exists
zi(.) a trajectory of Fk0 on [bi, ai+1] such that zi(bi) = y(bi) ∈Mk0 ∩ S, zi(.) ⊂Mk0

and
||y(.)− zi(.)||L∞[bi,ai+1]≤ eκ(ai+1−bi)ρi ≤ 2 eκT ||F ||εi,

where we denote εi = L (J ∩ (bi, ai+1)) and

ρi :=
ˆ ai+1

bi

d(ẏ(s), Fk0(zi(s)))ds ≤ 2 ||F ||εi.

Since εi ≤ L (J\Jm), we get

||y(.)− zi(.)||L∞[bi,ai+1]≤ 2 eκT ||F ||L (J\Jm).

Furthermore, from the assumption of the proposition we have zi(.) ⊂ S. Thus we
get

dS(y(.)) ≤||y(.)− zi(.)||L∞[bi,ai+1]≤ 2 eκT ||F ||L (J\Jm), ∀m ≥ 1.
By letting m → ∞, we have L (J\Jm) → 0. Therefore y(.) ⊂ S, which is the
required result. �

Step 3. From the above Proposition, we deduce that (ii) =⇒ (i) by a simple finite
induction argument starting fromM = ∪ni=1Mi and adding an interfaceMk0 ⊂ Λ,
with k0 ∈ {n + 1, ..., n + l}, in such a way that decreases the dimension ofMk0 at
each iteration.
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To initiate the induction, take firstM = ∪ni=1Mi andMk0 , k0 ∈ {n + 1, ..., n + l},
with maximal dimension among the submanifolds that constitute the singular set.
Then if y(.) a trajectory of F such that y(t) ∈ S ∩ (M∪Mk0) and y([t, T ]) lies
entirely either inM orMk0 , then Step 1 gives us that y([t, T ]) ⊂ S. Furthermore,
from the proposition above, we get that any trajectory y(.) of F such that y(t) ∈
S ∩ (M∪Mk0) and y([t, T ]) ⊂M∪Mk0 , verifies y([t, T ]) ⊂ S.

Now we prove the direct implication (i) =⇒ (ii). For that, we use Lemma 2.14.
See also [41, Proposition 5.1 and Lemma 5.2]. Suppose (S, F ) is strongly invariant.
Let x ∈ S ∩Mi, ν ∈ F ]

i (x) and η ∈ Np
Si

(x) such that |η|= 1 be a proximal normal
realised at σ > 0, from Definition 2.6.
Since ν ∈ F ]

i (x), then by Lemma 2.14, there exists a C1 trajectory y(.) of F ]
i , defined

on some interval [t, t+ε] with ε > 0 such that y(t) = x and ẏ(t) = ν and y(.) ⊆Mi.
By the strong invariance hypothesis, we have y(.) ⊆ Si. So we get

〈ν, η〉 = lim
τ↓t

〈y(τ)− x
τ − t

, η
〉
≤ lim

τ↓t

1
2σ(τ − t) |y(τ)− x|2 = 0.

By taking the supremum over F ]
i (x), we obtain the desired result. �
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3.1 Introduction
First order Hamilton Jacobi equations have been exstensively studied in the Eu-
clidean space or more generally in infinite dimensional Banach spaces that enjoy the
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Radon Nikodym property or have a smooth norm. A substential literature exists
on the subject going back to several decades ago [1, 28, 29, 79]. More recently,
there has been an increasing interest in studying first order Hamilton Jacobi equa-
tions posed in more general metric spaces. Typical examples include topological
networks, the space of Borel probability measures, or more generally any generic
metric space. This problem involves many challenging mathematical issues and has
a wide range of applications in various fields such as data transmission, social net-
work problems, traffic management problems, fluid mechanics, optimal control of
multi-agent systems and mean field game problems.

Several new notions of viscosity were proposed for first order Hamilton Jacobi equa-
tions in metric spaces. Since a notion of a differential for real valued functions
defined in a general metric space is not well defined, the Hamiltonians studied in
this case depend on the differential of the unknown function only through its local
Lipschitz constant, called the local slope. In [32, 80], the authors studied a class of
Hamilton Jacobi equations of Eikonal type in a general metric space. The notion
of viscosity used by the authors is defined via optimal control interpretations along
absolutely continuous curves. This has the advantage to reduce the viscosity notion
into a one dimensional problem and requires no structure on the space considered.
In [81, 33, 34], the authors proposed a different notion of viscosity for a similar class
of Hamilton Jacobi equations defined in a complete geodesic metric space using local
slopes and suitable test functions. In [82], the authors provide a comparison between
these notions of viscosity. In particular, they show that the notions coincide in the
case of the Eikonal equation defined in a general geodesic space.

On the other hand, there is a growing interest in studying Hamilton Jacobi equa-
tions on a simpler structure in the form of a network. The latter is defined as a
finite collection of isometric half-spaces glued together along their boundary. For
example in the one dimensional case, a network is the result of gluing a finite num-
ber of half-lines along their origin. The subset where the gluing operation occurs is
called the junction. On each branch of the network, one defines a Hamiltonian, the
Hamiltonians are a priori independent from one another and a discontinuity occurs
at the junction. Thanks to the smooth structure that each branch of the network
possesses, one can define more general Hamilton Jacobi equations than the Eikonal
type equations. The notion of viscosity solution is defined here using test functions
that are continuous on the network and continuously differentiable on each branch.
First, the special case of the Eikonal equation on networks has been considered in
[20, 21]. Later in [24] the authors treated the case of convex Hamiltonians on each
branch in a one dimensional network. In their work, an additional junction con-
dition is considered, called the flux-limiter, in order to guarantee well-posedness of
the problem. These results have been extended to the case of quasi-convex Hamil-
tonians in [22, 23] and the case of a higher dimensional network was treated in [83].
In [27] the authors studied the case of a one dimensional network with Hamiltoni-
ans that are not necessarily convex nor quasi-convex. They introduced a junction
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condition called the Kirchoff condition and proved well-posedness of the problem
using the same notion of viscosity as in [22, 23]. Furthermore, they proved that the
flux-limiter type condition at the junction is a special case of the Kirchoff-type con-
dition. The book [43] offers a detailed discussion on the different junction conditions
considered on networks and the notion of viscosity solution adopted in this space.

The current state of the art keeps many problems unsolved. Indeed, the techniques
developed for the treatment of Hamilton Jacobi equations in a general metric space
are restricted to a certain class of Hamilton Jacobi equations such as Eikonal equa-
tions. On the other hand, the setting of a network allows to study more general
Hamilton Jacobi equations but the techniques used in this setting do not take ad-
vantage of the metric structure of the network and focus more on the differential
structure that exists on each branch. Furthermore, extending these current results
to a network where the branches have different Hausdorff dimensions is still a chal-
lenging question. The purpose of this chapter is to define a viscosity notion for first
order Hamilton Jacobi equations in a class of metric spaces general enough that
includes Euclidean spaces and networks. Furthermore, this viscosity notion should
ideally coincide with the classical one developed in Euclidean spaces. Therefore, we
focus our attention in this manuscript on developing a theory of first order viscosity
notion in a subclass of metric spaces called CAT(0) spaces.

A metric space (X, d), is said to be a CAT(0) space1 if, roughly speaking, it is a
geodesic space and its geodesic triangles are “thinner” than the triangles of the Eu-
clidean plane R2 (see Definition 3.1). This method of comparing geodesic triangles
of a geodesic space with triangles from a model space, such as the Euclidean plane,
was first introduced by Alexandrov [51, 52] to give a synthetic definition of curvature
for geodesic spaces. In particular, CAT(0) spaces are spaces of curvature not greater
than 0 in the sense of Alexandrov. Typical examples of CAT(0) spaces are Hilbert
spaces, convex sets of Hilbert spaces, simply connected Riemannian manifolds with
nonpositive sectional curvature, multi-dimensional networks and the space of Borel
probability measures over the real line [85]. Although CAT(0) spaces do not pos-
sess any smooth structure, they carry a solid first order calculus similar to smooth
manifolds with sectional curvature not greater than 0. For example, a notion of
tangent cone TxX is well defined at each point of X. The tangent cone is the metric
counterpart of the tangent space in Riemannian geometry or the Bouligand tangent
cone in convex analysis. Furthermore, a notion of differential is well defined for any
function u : X → R that is Lipschitz and DC. By DC functions we mean real val-
ued functions that can be represented as a difference of two semiconvex functions.
The exact definition of this class of functions is given in Definition 3.4. We refer to
[86, 50, 52, 51, 53] for a more detailed discussion on the topic.

In this chapter, we propose to study first order Hamilton Jacobi equations in proper
1The acronyme “CAT” stands for the initials of the three mathematicians Cartan, Alexandrov

and Toponogov. This notation was introduced by Gromov in 1987 [84, p.119].
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CAT(0) spaces, i.e., CAT(0) spaces whose closed bounded sets are compact. More
specifically, we consider the following stationary problems,H(u(x), x,Dxu) = 0, ∀x ∈ Ω,

u(x) = `(x), ∀x ∈ ∂Ω,
(3.1)

and the time dependent problems,∂tu+H(x,Dxu) = 0, ∀ (t, x) ∈ (0,+∞)×X,
u(0, x) = `(x), x ∈ X,

(3.2)

where Ω is an open set, ` is a real valued continuous and bounded function on its
domain, and u is a Lipschitz and DC function. The differential Dxu : TxX → R
is defined in the tangent cone of X at a point x. The differential Dxu is itself a
Lipschitz, DC and positively homogeneous function (see Proposition 3.8.1). The
Hamiltonian H : R × X × DC1(TxX) → R is a real valued function. The set
DC1(TxX) represents Lipschitz, positively homogeneous and DC functions on TxX.

The viscosity notion we use here is different from what is currently present in the
literature. We define the notion of viscosity using subsets of the class of Lipschitz
and DC functions. More precisely, we test upper semicontinuous subsolutions with
Lipschitz semiconvex functions and we test lower semicontinuous supersolutions with
Lipschitz semiconcave functions. We prove comparison results that hold for any
upper semicontinuous subsolution and any lower semicontinuous supersolution using
the same techniques as in the classical theory of viscosity. In particular, we apply
the variable doubling technique using the squared distance function in the same way
as in [4, 3]. Comparison results guarantee uniqueness of the solution. Furthermore,
we prove existence of the solution by virtue of Perron’s method in the same way
originally developped in [4, 3].

We give several examples showing the degree of generality of our setting. Namely,
we show that the setting developed in this chapter coincides with classical setting
when X = RN by treating the examples of Hamilton Jacobi Bellman equations and
Isaacs’ equations defined in RN . Furthermore, we give several examples of Eikonal
type equations and Eikonal type equations in the presence of an obstacle defined in
proper CAT(0) spaces of the form:

• the proper CAT(0) space obtained by gluing together three half-lines of R2


X1 := [0,+∞)e1,

X2 := [0,+∞)e2,

X3 := [0,+∞)e3,

along the origin point A = {0};
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A

X1X2

X3

Figure 3.1: The space obtained by gluing X1, X2 and X3 along A.

• the proper CAT(0) space obtained by gluing together the setsX1 := {(x1, x2, x3) ∈ R3 : x3 = 0},
X2 := {(x1, x2, x3) ∈ R3 : x1 = x2 = 0},

along the origin point A = {0};

•
X1

X2

A

Figure 3.2: The space obtained by gluing X1 and X2 along A.

• the CAT(0) space obtained by gluing together the setsX1 := {(x1, x2, x3) ∈ R3 : x3 = 0},
X2 := {(x1, x2, x3) ∈ R3 : x1 = x2 = 0, x3 ≥ 0},

along the origin point A = {0};
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•
X1

X2

A

Figure 3.3: The space obtained by gluing X1 and X2 along A.

The gluing operation will be defined precisely in Section 3.2. The justification that
the above spaces are proper CAT(0) spaces will also be given in Section 3.2. The
examples of the Hamilton Jacobi equations we treat in the spaces above are of the
following form:

γu(x) + sup
v∈TxX
|v|x=1

{−Dxu � v} − b(x) = 0, x ∈ X,

and

min

γu(x) + sup
v∈TxX
|v|x=1

{−Dxu � v} − b1(x), γu(x)− b2(x)

 = 0, x ∈ X,

where γ > 0 is a strictly positive constant and b, b1, b2 : X → R are Lipschitz and
bounded functions. For the time dependent case we treat the following Eikonal
equation 

∂tu+ sup
v∈TxX
|v|x=1

{−Dxu � v} = 0, (t, x) ∈ (0,+∞)×X,

u(0, x) = `(x).
where ` : X → R is a continuous and bounded function.

The chapter is organized the following way. In Section 3.2 we give the definition of
CAT(0) spaces, we describe the gluing operation of a collection of CAT(0) spaces,
we define the central notion of the tangent cone and we give the definition of DC
functions and their differential in CAT(0) spaces. In Section 3.3 we define the notion
of viscosity solution and the general form of the Hamiltonian we are going to work
with. We show that we recover the main features of viscosity theory in this setting:
the comparison principle and Perron’s method. Finally, we give several examples
showing the degree of generality of our setting. In particular, we treat classical
examples of Hamilton Jacobi equations when the space X = RN to demonstrate
that our setting coincides with the classical one in RN and we treat the case of
Eikonal type equations defined in several structures as the ones presented above.
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3.2 Calculus in CAT(0) spaces
Let us briefly recall some facts in metric geometry. Classical references are [86, 50,
52, 51, 53]. Let (X, d) be a metric space. For x ∈ X and r > 0 we denote by B(x, r)
and B(x, r) the open and closed balls of center x and radius r respectively.
The metric space (X, d) is said to be proper if all of its closed bounded sets are
compact sets.
Let l > 0. A metric space (X, d) is said to be a geodesic space if any two points
x, y ∈ X are connected by at least one unit speed geodesic, i.e. a map γ : [0, l]→ X
such that γ0 = x, γl = y and

d(γt, γs) =|t− s|, ∀t, s ∈ [0, l].

In particular, we necessarily have l = d(x, y). The image of γ is called the geodesic
segment with endpoints x and y.
Let I ⊂ R be an interval. A map γ : I → X is said to be a constant speed geodesic
if there exists a constant D ≥ 0 such that

∀s, t ∈ I, d(γs, γt) = D|s− t|.

In what follows, we will refer to constant speed geodesics simply by geodesics.
A geodesic space (X, d) is said to be geodesically extendible if for every geodesic
γ : [a, b]→ X with a < b ∈ R, there exists a geodesic γ̃ : (−∞,+∞)→ X such that

γ̃|[a,b] = γ.

3.2.1 CAT(0) spaces
Let (X, d) be a geodesic space. In order to define the notion of curvature of X, we
shall first introduce the notion of geodesic triangles. A geodesic triangle4(x, y, z) in
a geodesic space is the result of three points x, y, z ∈ X, called the vertices, together
with a choice of three corresponding geodesics, the edges, linking the vertices. A
comparison triangle for the geodesic triangle 4(x, y, z) is a geodesic triangle built
in the Euclidean plane (R2, dR2), denoted by 4̄(x̄, ȳ, z̄), with x̄, ȳ, z̄ ∈ R2, such that

dR2(x̄, ȳ) = d(x, y), dR2(ȳ, z̄) = d(y, z), dR2(x̄, z̄) = d(x, z).

The choice of the comparison triangle is unique up to an isometry [50, Lemma I.2.14].
A point a ∈ X is said to be between y and z provided that we have

d(y, a) + d(z, a) = d(y, z).

This means that the point a lies in a geodesic segment of y and z. The comparison
point of a is the unique point ā ∈ R2, once the comparison triangle 4̄(x̄, ȳ, z̄) is
fixed, such that

dR2(ȳ, ā) + dR2(z̄, ā) = dR2(ȳ, z̄).
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Definition 3.1 (CAT(0) spaces). A metric space (X, d) is called a CAT(0) space
if it is a geodesic space and satisfies the following comparison triangle inequality:
for any x, y, z ∈ X and any point a ∈ X between y and z, the comparison points
x̄, ȳ, z̄, ā ∈ R2 satisfy

d(x, a) ≤ dR2(x̄, ā). (3.3)

Figure 3.4: The comparison triangle on the left and the geodesic triangle on the
right.

Remark 3.2.1. The comparison triangle inequality (3.3) is equivalent to the fol-
lowing one: for any x, y, z ∈ X and any comparison points x̄, ȳ, z̄ ∈ R2,

d2(γt, x) ≤ d2
R2

(
(1− t)ȳ + tz̄, x̄

)
, ∀t ∈ [0, 1], (3.4)

where γ : [0, 1] → X is the geodesic joining γ0 = y and γ1 = z. By expanding the
right hand side of (3.4) using the elementary properties of the inner product in R2,
it becomes

d2(γt, x) ≤ (1− t)d2(γ0, x) + td2(γ1, x)− t(1− t)d2(γ0, γ1), ∀t ∈ [0, 1]. (3.5)

Inequality (3.5) can be used in an equivalent way as a definition of CAT(0) spaces.
It can be understood as a synthetic inequality that quantifies the deficit of the
curvature of X with respect to the Euclidean space R2, where inequality (3.5) is an
equality. In other words, inequality (3.5) quantifies how much the triangle4(x, y, z)
in X is thinner with respect to the triangle 4̄(x̄, ȳ, z̄) in R2.

Example 3.1. Here are some examples of CAT(0) spaces [50, Example II.1.15].

• Euclidean spaces, Hilbert spaces (the only Banach spaces which are CAT(0)).

• Convex subsets of Hilbert spaces.

• Convex subsets of other CAT(0) spaces.

• The n-dimensional hyperbolic space, denoted Hn. It is the unique simply con-
nected, n-dimensional complete Riemannian manifold with a constant negative
sectional curvature equal to −1.

• Simply connected Riemannian manifolds with sectional curvature not greater
than 0.
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• Metric R-trees, i.e. any metric space T such that:

– there exists a unique geodesic segment joining each pair of points x, y ∈ T ;
we denote it by [x, y];

– if [x, y] ∩ [y, z] = {y}, then [x, y] ∪ [y, z] = [x, z].

• The 2-Wasserstein space over the real line, denoted P2(R) [85, Proposition
4.1].

Following [50, Proposition II.1.4], an important result which is a consequence of Def-
inition 3.1 is that in a CAT(0) space (X, d), any two points x, y ∈ X are connected
by a unique geodesic joining x and y.

Let (X, d) be a CAT(0) space. A subset C ⊂ X is said to be convex if for every
x, y ∈ C, the geodesic segment connecting x and y lies entirely in C.
In the Euclidean plane R2, the open balls are convex. Hence, from Definition 3.1, it is
straighforward to prove that the open balls of (X, d) are convex (see [50, Proposition
II.1.4-(3)] for a detailed proof of this fact). Furthermore, any convex subset of X
equipped with the distance d is also a CAT(0) space [50, Examples II.1.15].

Another useful result concerning CAT(0) spaces is that any product of two CAT(0)
spaces is a CAT(0) space when equipped with the product distance, as the following
lemma shows.

Lemma 3.2. ([50, Exercice II.1.16]). Let (Y, dY ) and (Z, dZ) be two CAT(0) spaces.
Then the product space (Y × Z, dY×Z), equipped with the distance

d2
Y×Z

(
(y1, z1), (y2, z2)

)
:= d2

Y (y1, y2) + d2
Z(z1, z2),

is a CAT(0) space. Moreover, if Y and Z are proper spaces then the product space
is also a proper space.

3.2.2 Gluing constructions
In this section, we will discuss the most obvious way of gluing metric spaces, which
is to attach them along isometric subsets. Furthermore, we will see that when the
underlying metric spaces are CAT(0) spaces, and the isometric subsets are complete
CAT(0) subspaces, then the resulting space by the gluing operation is a CAT(0)
space. In this section, the set I will denote an arbitrary index set (countable or
uncountable). The following definition can be found in [50, Definition I.5.23]

Definition 3.2. (Gluing operation). Let I be an index set. Let (Xλ, dλ)λ∈I be a
familly of metric spaces. Let Aλ ⊂ Xλ be fixed closed subsets. Let A be a metric
space and suppose that for each λ ∈ I, there exists an isometry iλ : A → Aλ. Let
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∪λ∈IXλ be the disjoint union of the metric spaces Xλ, λ ∈ I. We define the space
X as the quotient space of ∪IXλ by the equivalence relation,

∀x, y ∈ ∪IXλ, xR y ⇔ ∃ a ∈ A, λ, λ′ ∈ I : x ∈ Aλ, y ∈ Aλ′
and i−1

λ ({x}) = i−1
λ′ ({y}) = a,

where we identify each Xλ with its image in X. X is called the glued space along A
and is denoted

X :=
⊔
A

Xλ.

Some examples of glued spaces will be given below. The following theorem shows
how to define a distance on the glued space X and summarizes its main properties.

Theorem 3.3. ([50, Lemma I.5.24]). Let X =
⊔
A

Xλ. Let x ∈ Xλ and y ∈ Xλ′. we

define the following function,

d(x, y) :=

dλ(x, y) if λ = λ′,

inf
a∈A
{dλ(x, iλ(a)) + dλ′(x, iλ′(a)) if λ 6= λ′.

We have

1. d is a distance on X;

2. if I is finite and each (Xλ, dλ) is proper, then (X, d) is proper;

3. if each space (Xλ, dλ) is a geodesic space and A is proper, then (X, d) is a
geodesic space.

For CAT(0) spaces, we have a stronger result that we give in the next proposition.

Proposition 3.3.1. ([50, Theorem II.11.3] Gluing families of CAT(0) spaces). Let
I be an index set. Let (Xλ, dλ)λ∈I be a family of CAT(0) spaces. Let Aλ ⊂ Xλ be
closed subsets. Let A be a metric space and suppose that for all λ ∈ I, there exist
isometries iλ : A→ Aλ. Let X = tAXλ be the resulting glued space along A.
If A is a complete CAT(0) space, then the glued space X is a CAT(0) space, endowed
with the distance defined in Theorem 3.3.

Example 3.4. Let X1 and X2 be the following two proper CAT(0) spaces:X1 := {(x1, x2, x3) ∈ R3 : x3 = 0},
X2 := {(x1, x2, x3) ∈ R3 : x1 = x2 = 0}.

Let A := {0}. We consider the following glued space

X := X1
⊔
A

X2,

along A. The resulting glued space X is a proper CAT(0) space.
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•
X1

X2

A

Indeed, X1 are X2 are Euclidean spaces. Hence they are proper CAT(0) spaces when
endowed with their Euclidean distances. Furthermore, A is a complete CAT(0) space
since it is reduced to one point. Hence, according to Theorem 3.3 and Proposition
3.3.1, X is a proper CAT(0) space when endowed with its geodesic distance. The
resulting distance is obtained thanks to Theorem 3.3 in the following way

∀x, y ∈ X, d(x, y) :=

|x− y|, if ∃ i ∈ {1, 2} : x, y ∈ Xi,

|x|+|y|, otherwise,

where |.| denotes the Euclidean norm.
Example 3.5. Let X1 and X2 be the following two proper CAT(0) spaces:X1 := {(x1, x2, x3) ∈ R3 : x3 = 0},

X2 := {(x1, x2, x3) ∈ R3 : x1 = x2 = 0, x3 ≥ 0}.

Let A := {0}. We consider the following glued space

X := X1
⊔
A

X2,

along A. The resulting glued space X is a proper CAT(0) space.

•
X1

X2

A
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Indeed, X1 are X2 are closed convex subsets of Euclidean spaces. Hence they are
proper CAT(0) spaces when endowed with their Euclidean distances. Furthermore,
A is a complete CAT(0) space since it is reduced to one point. Hence, according
to Theorem 3.3 and Proposition 3.3.1, X is a proper CAT(0) space when endowed
with its geodesic distance. The resulting distance is obtained thanks to Theorem
3.3 in the following way

∀x, y ∈ X, d(x, y) :=

|x− y|, if ∃ i ∈ {1, 2} : x, y ∈ Xi,

|x|+|y|, otherwise,

where |.| denotes the Euclidean norm.

Example 3.6. Here are more examples covered by this setting:

On the left, the space
J =

⊔
Γ
Ji

is the result of gluing three copies of the half-line [0,+∞) along the subset Γ = {0}.
On the right, the space J is isometric to the Euclidean plane R2 obtained by gluing
two copies of the half-plane {(x, y) ∈ R2 : x ≥ 0}, along the subset Γ = {(x, y) ∈
R2 : x = 0}.

3.2.3 Tangent cone
In this section, we recall the notion of the tangent cone on geodesic spaces and give
its main properties in the case of CAT(0) spaces. The tangent cone is a central
notion in metric geometry, similar to the tangent space for differentiable manifolds
or the Bouligand tangent cone in convex analysis. We refer to the bibliography
mentioned at the beginning of this section for a more detailed discussion.
Let (X, d) be a geodesic space and let x ∈ X. We denote by Geox(X) the set of
geodesics emanating from x and defined in some neighborhood of the form [0, ε],
with ε > 0. Let η, γ ∈ Geox(X). Then the following quantity

dx(η, γ) := lim sup
t↓0

d(ηt, γt)
t

(3.6)
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is a pseudo-distance on the space Geox(X). Moreover, dx defines an equivalence
relation on Geox(X) in the following way:

∀η, γ ∈ Geox(X), η ∼ γ if and only if dx(η, γ) = 0.

The quotient space Geox(X)/ ∼ endowed with quotient distance, still denoted by
dx, is a metric space. The equivalence class of a geodesic γ ∈ Geox(X) under the
equivalence relation ∼ is denoted by γ′0 ∈ Geox(X)/ ∼. It represents the initial
velocity or direction of γ.

Definition 3.3 (Tangent cone). Let (X, d) be a geodesic space and x ∈ X. The
tangent cone at x is the metric space (TxX, dx), where TxX is the abstract completion
of (Geox(X)/ ∼, dx), i.e.

TxX := Geox(X)/ ∼dx .

We denote by 0x ∈ TxX the equivalence class of the geodesic with speed equal to 0
in Geox(X)/ ∼. It is called the origin or the apex of the tangent cone TxX.

Example 3.7. If (X, d) is a simply connected manifold with sectional curvature not
greater 0, then the tangent cone at a point x ∈ X is isometric to the usual tangent
space.

When (X, d) is a general geodesic space, the structure of the tangent cone at a
point can be very wild and little can be said about it. However, when (X, d) is
a CAT(0) space, then the tangent cone behaves nicely. This fact is exploited to
built a first order calculus in (X, d). First, we have the following key result. If
(X, d) is a CAT(0) space and x ∈ X, then the supremum limit in (3.6) is actually a
limit. In fact, we have a stronger result. The tangent cone at a given point x of a
CAT(0) space is a complete CAT(0) space when endowed with the distance dx [50,
Theorem II-3.19]. Furthermore, the tangent cone of a CAT(0) space has a structure
resembling a Hilbert space. This is due to the fact that it is a complete CAT(0)
space and it has a cone structure.
To make the latter statement clearer, first notice that for any λ ≥ 0, the map
sending the geodesics (γt) : t 7→ γt ∈ Geox(X) to the geodesics (γλt) : t 7→ γλt ∈
Geox(X) can be passed to the quotient Geox(X)/ ∼ and the resulting quotient map
sending the equivalence class of (γt) to the equivalence class of (γλt) is λ-Lipschitz
on Geox(X)/ ∼. Indeed, for any two geodesics (γt)t, (ηt)t that belong to Geox(X),
we have

lim
t↓0

d(γλt, ηλt)
t

= λ lim
t↓0

d(γλt, ηλt)
λt

= λ lim
s↓0

d(γs, ηs)
s

.

Therefore, by passing to the quotient, the map is λ-Lipschitz from Geox(X)/ ∼
to itself. Hence it can be extended by continuity to TxX and can be seen as the
operation of multiplication by a positive scalar. We denote it the following way:

∀ v ∈ TxX, ∀λ ≥ 0, λv ∈ TxX.
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Thus TxX has a structure of a cone. Moreover, for any v, w ∈ TxX and λ ∈ R+, we
define the norm and the scalar product on TxX the following way:

Norm : |v|x := dx(v, 0x), (3.7a)

Scalar product : 〈v, w〉x := 1
2(|v|2x+|w|2x − d2

x(v, w)). (3.7b)

Furthermore, we have the following results on the norm and scalar product.
Proposition 3.7.1. ([87, Proposition 2.11] Calculus on the tangent cone). Let
(X, d) be a CAT(0) space, let x ∈ X be a fixed point and TxX be the tangent cone
of X at x. Then the operations (3.7a) and (3.7b) are continuous in their variables.
The operation (3.7b) is symmetric. Furthermore, we have

|λv|x = λ|v|x, (3.8a)
〈λv, w〉x = 〈v, λw〉x = λ〈v, w〉x, (3.8b)
|〈v, w〉x| ≤|v|x|w|x and 〈v, w〉x =|v|x|w|x if and only if |w|xv =|v|xw, (3.8c)

for all v, w ∈ TxX and λ ∈ R+.
Since CAT(0) spaces are uniquely geodesic, meaning that any two points are con-
nected by a unique unit speed geodesic, we introduce the following notation which
is going to be useful throughout this chapter.
Notation 3.8. Let (X, d) be a CAT(0) space, and let x, y ∈ X. the unique unit
speed geodesic connecting x and y is denoted by

t 7→ Gx,y
t , ∀ t ∈ [0, d(x, y)].

Furthermore, we denote by
↑yx:= (Gx,y

0 )′ ∈ TxX
the direction of Gx,y at x. The direction between x and y has a norm equal to 1,
meaning that

| ↑yx |x = 1.

3.2.4 DC calculus
In this section, we introduce the notion of real valued directionally differentiable
functions in CAT(0) spaces. A special attention will be given to Lipschitz functions
that are semiconvex or semiconcave since they are differentiable at every point ac-
cording to this definition. These functions are going to serve us as test functions in
the definition of viscosity notion in the next section.
Let (X, d) be a CAT(0) space and x ∈ X. Let f : X → R be a function. We say
that f has a directional derivative at x along the geodesic γ : [0, ε]→ X emanating
from x, with ε > 0, if the limit

d

dt

∣∣∣∣
t=0

f(γt) = lim
t↓0

f(γt)− f(γ0)
t

exists and is finite.
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Definition 3.4. Let f : X → R be a function.

• We say that f is semiconvex if there exists λ ∈ R such that for every geodesic
γ : [0, 1]→ X the following inequality holds:

f(γt) ≤ (1− t)f(γ0) + tf(γ1)− λ

2 t(1− t)d
2(γ0, γ1), (3.9)

or equivalently, if the real-to-real function

t 7→ f(γt)−
λ

2d
2(γ0, γ1)t2

is convex. We also say that f is λ-convex. If λ = 0 then we simply say that f
is convex.

• We say that f is semiconcave (or λ-concave for some λ ∈ R) if and only if −f
is semiconvex (or (−λ)-convex).

• Finally, we say that f is a DC function if it can be represented as a difference
of two semiconvex functions.

In particular, every semiconvex function is a DC function and every semiconcave
function is also a DC function. Furthermore, we can define locally semiconvex and
locally smiconcave functions as well.

Let Ω ⊂ X be an open subset. A function f : Ω→ R is said to be locally semiconvex
if for any point x ∈ X there exists a neighborhood Ux of x such that for all geodesics
γ : [0, 1]→ Ω with endpoints in Ux we have that inequality (3.9) holds. Similarly, a
function f : Ω → R is is said to be locally semiconcave if and only if −f is locally
semiconvex. Finally, a function f : Ω → R is said to be a locally DC function if it
can be locally represented as a difference of two semiconvex functions.

Let Ω ⊂ X be an open subset and x ∈ Ω. Let f : Ω→ R be a locally Lipschitz and
locally semiconvex function. Then the directional derivative of f along any geodesic
emanating from x exists and is finite by [87, Proposition 2.16]. Furthermore, we
define the differential function of f at x from its directional derivatives as the map
Dxf : (GeoxX/ ∼)→ R defined as

Dxf � γ
′
0 := d

dt

∣∣∣∣
t=0

f(γt) = lim
t↓0

f(γt)− f(γ0)
t

, ∀γ ∈ GeoxX, γ′0 ∈ GeoxX/ ∼ .

Notice that the above definition does not depend on the choice of the geodesic γ
whose velocity is γ′0. Moreover, the differential function is Lipschitz, convex and
positively homogeneous. Thus it can be uniquely extended to the whole tangent
cone TxX by density. These properties are collected in the next proposition.
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Proposition 3.8.1. ([87, Proposition 2.16] Differential of semiconvex functions).
Let f : Ω→ R be a locally Lipschitz and locally semiconvex function around x ∈ Ω.
Then f is directionally differentiable at x and the differential function Dxf : TxX →
R is Lipschitz, convex and positively homogeneous, i.e.,

Dxf � (λv) = λDxf � v, ∀v ∈ TxX and λ ≥ 0.

Similarly, if f : Ω→ R is locally Lipschitz and locally semiconcave, then it is differ-
entiable at any x ∈ Ω and its differential function is Lipschitz, concave, positively
homogeneous and defined By

Dxf := −Dx(−f).

Finally, if f : Ω → R is a locally Lipschitz and locally DC function, then f is dif-
ferentiable at any x ∈ Ω and its differential function is Lipschitz, DC and positively
homogeneous.
We denote by DClip(Ω) the class of locally Lipschitz and locally DC functions on Ω.
We also denote by DC1(TxX) the class of Lipschitz, DC and positively homogeneous
functions on the tangent cone TxX at some point x ∈ X. Finally we denote by
DC1(TX) the set

DC1(TX) := {(x, px) ∈ X ×DC1(TxX)},

which is the metric analogue of the cotangent bundle in this setting.
Next, we give several examples of locally Lipschitz and locally DC functions in
CAT(0) spaces to demonstrate how abundant these functions are in this class of
metric spaces. Moreover, we will give the explicit expression of their differential
function at every point.
In the Euclidean plane R2, for ȳ ∈ R2 fixed, the Euclidean distance function
x̄ 7→ dR2(x̄, ȳ) is Lipschitz continuous and convex and the squared Euclidean dis-
tance function x̄ 7→ d2

R2(x̄, ȳ), is locally Lipschitz continuous and 2-convex. It follows
directly from Definition 3.1 that for any CAT(0) space (X, d) and y ∈ X fixed, the
distance function x 7→ d(x, y) is Lipschitz continuous and convex [50, Proposition
II.2.2] and from Remark 3.2.1 that the squared distance function x 7→ d2(x, y) is
locally Lipschitz continuous and 2-convex. Furthermore, their differential functions
are given explicitly in the next proposition, whose proof can be found in [87, Propo-
sition 2.17].
Proposition 3.8.2. Let (X, d) be a CAT(0) space. Let y ∈ X be a fixed point. The
following properties hold true.

• For all x ∈ X, we have

∀v ∈ TxX, Dxd(., y) � v =

−〈v, ↑
y
x〉x, if x 6= y,

|v|x, if x = y,

where ↑yx is given in Notation 3.8.
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• For all x ∈ X, we have

∀v ∈ TxX, Dxd
2(., y) � v = −2d(x, y)〈v, ↑yx〉x.

More generally, if (X, d) is a CAT(0) space and C is a complete convex subset of
X, then the distance function to C is also Lipschitz and convex. We summarize the
main properties of the distance function to a complete convex subset in the next
proposition.

Proposition 3.8.3. (Distance function to a convex set [50, Proposition II.2.4,
Corollary II.2.5]). Let (X, d) be a CAT(0) space. Let C be a complete convex subset
of X. Then the following holds:

1. for every x ∈ X, there exists a unique point π(x) called the projection of x
onto C such that

d(x, π(x)) = d(x, C) := inf
y∈C

d(x, y);

2. for all x, y ∈ X, we have |d(x, C)− d(y, C)| ≤ d(x, y);

3. the function x 7→ d(x, C) is convex.

Since the distance to a closed convex subset in a CAT(0) space is Lipschitz and con-
vex, then according to Proposition 3.8.1, it is differentiable at every point. The next
proposition is the first result of this chapter where we give the explicit expression
of the differential of the distance function to a complete convex subset in a CAT(0)
space.

Theorem 3.9 (Differential of the distance function to a complete convex set). Let
(X, d) be a CAT(0) space. Let C be a complete convex subset of X. Then the
following holds:

∀x ∈ X, ∀v ∈ TxX, Dxd(., C) � v =

−〈↑
π(x)
x , v〉x, if x /∈ C,

dx(v, TxC), if x ∈ C,

where, π(x) is the projection of x onto C, TxC is the tangent cone of x ∈ C, when
(C, d) is seen as a complete CAT(0) space and

dx(v, TxC) := inf
w∈TxC

dx(v, w).

The tangent cone TxC is a complete convex subset of the CAT(0) space (TxX, dx).

Proof. The proof is decomposed into two steps. Let x ∈ X.
Step 1 . If x /∈ C, then we have

∀y ∈ X, d(y, C) ≤ d(y, π(x)),
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which implies that

∀γ(.) ∈ Geox, lim
t↓0

d(γt, C)− d(x, C)
t

≤ lim
t↓0

d(γt, π(x))− d(x, π(x))
t

.

The last inequality is equivalent to

∀v ∈ Geox/ ∼, Dxd(., C) � v ≤ Dxd(., π(x)) � v.

By Lipschitz continuity of the differential functions, we get

∀v ∈ TxX, Dxd(., C) � v ≤ Dxd(., π(x)) � v,

and by Proposition 3.8.2 we have

∀v ∈ TxX, Dxd(., π(x)) � v = −〈↑π(x)
x , v〉x.

Therefore, we get

∀v ∈ TxX, Dxd(., C) � v ≤ −〈↑π(x)
x , v〉x.

For the other inequality, let v ∈ Geox/ ∼ and let γ : [0, r] → X be a geodesic such
that γ′0 = v. First, by [50, Lemma II.3.20] we have

lim
s→0

dx(↑π(γs)
x , ↑π(x)

x ) = 0.

Moreover, by Proposition 3.8.2 we have

Dxd(., π(x)) � v = −〈v, ↑π(x)
x 〉x.

Therefore, by the continuity of the scalar product asserted in Proposition 3.7.1 we
get

Dxd(., π(x)) � v = −〈v, ↑π(x)
x 〉x = lim

s↓0
−〈v, ↑π(γs)

x 〉x.

Furthermore, we have

Dxd(., π(x)) � v = lim
s↓0
−〈v, ↑π(γs)

x 〉x = lim
s↓0

lim
t↓0

d(γt, π(γs))− d(x, π(γs))
t

= lim
s↓0

inf
0<t<r

d(γt, π(γs))− d(x, π(γs))
t

.

The last equality is true since the real-to-real function

t 7→ d(γt, π(γs))

is convex, so the incremental ratio

(0, r] 3 t 7→ d(γt, π(γs))− d(x, π(γs))
t
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is non decreasing. The monotonicity property of the above incremental ratio also
gives us

lim
s↓0

inf
0<t<r

d(γt, π(γs))− d(x, π(γs))
t

≤ lim
s↓0

inf
s≤t<r

d(γt, π(γs))− d(x, π(γs))
t

= lim
s↓0

d(γs, π(γs))− d(x, π(γs))
s

.

Moreover we have

∀s ∈ [0, r], d(x, π(γs)) ≥ d(x, C), and d(γs, π(γs)) = d(γs, C).

Therefore, we get

Dxd(., π(x)) � v ≤ lim
s↓0

d(γs, π(γs))− d(x, π(γs))
s

≤ lim
s↓0

d(γs, C)− d(x, C)
s

= Dxd(., C) � v.

This is true for any v ∈ Geox/ ∼. Lastly, by the Lipschitz continuity of the differ-
entials we get

∀v ∈ TxX, Dxd(., π(x)) � v ≤ Dxd(., C) � v,
which is the desired inequality.
Step 2 . Let x ∈ C. By the Lipschitz continuity of the differentials, it is enough to
consider only geodesic directions in TxX. Let γ : [0, r]→ X be a geodesic such that
γ′0 = v ∈ Geox/ ∼. Then we have

Dxd(., C) � v = lim
t↓0

d(γt, C)
t

= inf
0<t<r

d(γt, C)
t

,

where the last equality holds since the real-to-real function t 7→ d(γt, C) is convex.
Consequently we have

Dxd(., C) � v = inf
0<t<r

d(γt, C)
t

= inf
0<t<r

inf
y∈C

d(γt, y)
t

.

On the other hand, we have

dx(v, TxC) := inf
w∈TxC

dx(v, w) = inf
β∈Geox(C)

lim
t↓0

d(γt, βt)
t

= inf
y∈C

lim
t↓0

d(γt, y)
t

= inf
y∈C

inf
0<t<r

d(γt, y)
t

,

where the last two equalities hold because

{βt : β : [0, r′]→ X ∈ Geox(C), for some r′ ≥ 0, and t ∈ [0, r′]} = {y : y ∈ C},
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and the real-to-real function t 7→ d(γt, y) is convex.
Finally, notice that we have

inf
0<t<r

inf
y∈C

d(γt, y)
t

= inf
y∈C

inf
0<t<r

d(γt, y)
t

= inf
0<t<r
y∈C

d(γt, y)
t

.

This ends the proof. �

3.3 Stationary Hamilton Jacobi equations in proper
CAT(0) spaces

In this section, we study first order Hamilton Jacobi equations in proper CAT(0)
spaces. We recall that a metric space is proper if its closed bounded sets are compact.
We use subsets of Lipschitz DC functions as test functions to define the viscosity
notion. More precisely, we use subsets of semiconvex functions to test subsolutions
and subsets of semiconcave functions to test supersolutions. With this class of
test functions, we will see that we can define a notion of viscosity for first order
Hamilton Jacobi equations in proper CAT(0) spaces and recover the main features
of the theory: the comparison principle and Perron’s method. Throughout this
section, (X, d) is a proper CAT(0) space.
First, we define the notion of viscosity used throughout this section. Let Ω be an
open subset of X. We denote by Ω its closure and we set ∂Ω := Ω \ Ω. Let

H : R×DC1(TX)→ R

be a function called the Hamiltonian and ` : ∂Ω → R be a bounded continuous
function. We consider the following Hamilton Jacobi equationH(u(x), x,Dxu) = 0, ∀x ∈ Ω,

u(x) = `(x), ∀x ∈ ∂Ω,
(3.10)

where u : Ω→ R is a Lipschitz and DC function which is the unknown of equation
(3.10). We give the following definition of classical solutions of equation (3.10).

Definition 3.5 (Classical solutions). A Lipschitz and DC function u : Ω → R is
said to be a classical solution of (3.10) if for every x ∈ Ω we have

H(u(x), x,Dxu) = 0,

and u = ` on ∂Ω.

Let T EST − and T EST + be two subsets of DClip(Ω). T EST − and T EST + will de
given precisely later. We are now ready to define the notion of viscosity solutions.
This definition is dependent upon the choice of T EST − and T EST +.
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Definition 3.6. (Viscosity solution).

• An upper semicontinuous function u : Ω→ R is said to be a viscosity subsolu-
tion of (3.10) if, for any φ ∈ T EST − such that u−φ attains a local maximum
at x, we have

H(u(x), x,Dxφ) ≤ 0.

• Similarly, a lower semicontinuous function u : Ω→ R is said to be a viscosity
supersolution of (3.10) if, for any φ ∈ T EST + such that u− φ attains a local
minimum at x, we have

H(u(x), x,Dxφ) ≥ 0.

• A continuous function u : Ω → R is said to be a viscosity solution of (3.10)
if it is both a viscosity supersolution and a viscosity subsolution and satisfies
the boundary condition

u = `, in ∂Ω.

3.3.1 Comparison principle
Let H : R × DC1(TX) → R be a Hamiltonian and Ω be an open subset of X. We
consider the following Hamilton Jacobi equation:

H(u(x), x,Dxu) = 0, ∀x ∈ Ω. (3.11)

Let us give now the test functions we use for (3.11). We saw in the previous section
that real valued locally Lipschitz and locally DC functions of X behave well in this
setting. In particular, they are directionally differentiable at every point and the
differential is Lipschitz, positively homogeneous and a DC function. Therefore, we
will consider subsets of DClip(Ω) that verify the following properties given below.

Definition 3.7. (Test functions).
Let T EST − be a subset of DClip(Ω) such that

• constant functions belong to T EST −;

• for all φ(.), ψ(.) ∈ T EST − and a, b ≥ 0, a φ(.) + b ψ(.) ∈ T EST −;

• let y ∈ X be fixed. Then the function x 7→ d2(x, y) belongs to T EST −.

Let T EST + be a subset of DClip(Ω) such that

• T EST + = −T EST − := {−φ(.) : φ(.) ∈ T EST −}.
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Example 3.10. For example, one can take the following test functions

T EST − := {real valued locally Lipschitz and locally semiconvex functions}.

Thus we have

T EST + = {real valued locally Lipschitz and locally semiconcave functions}.

We test subsolutions with T EST − functions and supersolution with T EST + func-
tions. Next, we prove the comparison principle for the Hamilton Jacobi equation
(3.11). We assume the following hypotheses on the Hamiltonian.

Hypothesis 3.1. The Hamiltonian H is such that there exists Kdb > 0 such that
for all α > 0, for all r ∈ R and for all x, y ∈ Ω, we have

H(r, x,Dx(−αd2(., y)))−H(r, y,Dy(αd2(x, .))) ≤ Kdbd(x, y)(1 + αd(x, y)).

Hypothesis 3.2. The Hamiltonian H is such that there exists γ > 0 such that

γ(r − s) ≤ H(r, x, p)−H(s, x, p) for all r ≥ s, x ∈ Ω, and p ∈ DC1(TxX).

Now, we prove the following key lemma. It allows to use the variable doubling
technique to prove comparison type results. It was first proven in [3, Proposition
3.7] in the particular case of Euclidean spaces. We prove it here for every metric
space.

Lemma 3.11. Let O be a subset of a metric space (Z, dZ). Let Φ : O → R be an
upper semicontinuous function and Ψ : O → R be a lower semicontinuous function
such that Ψ ≥ 0, and

Mαn = sup
z∈O
{Φ(z)− αn Ψ(z) },

with (αn)n ⊂ R+ \ {0} is an increasing sequence such that αn → +∞ as n→ +∞.
Suppose that lim

αn→+∞
Mαn exists and

−∞ < lim
αn→+∞

Mαn < +∞.

Let zαn ∈ O be chosen such that

lim
αn→+∞

(Mαn − (Φ(zαn)− αn Ψ(zαn))) = 0.

Then the following holds:
(i) lim

αn→+∞
αn Ψ(zαn) = 0,

(ii) Ψ(ẑ) = 0 and Φ(ẑ) = sup
{Ψ(z)=0}

Φ(z) = lim
αn→+∞

Mαn ,

whenever ẑ ∈ O is an accumulation point of (zαn)αn .
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Proof. The proof is exactly the same as in [3, Proposition 3.7] even though it was
asserted for Euclidean spaces. We give it hereafter for the sake of completeness. Let

δαn = Mαn − (Φ(zαn)− αn Ψ(zαn)),

so that lim
αn→+∞

δαn = 0. Since Ψ ≥ 0, Mαn decreases as αn increases and lim
αn→+∞

Mαn

exists and is finite by assumption. Furthermore, we have:

Mαn
2
≥ Φ(zαn)−αn2 Ψ(zαn) = Φ(zαn)−αn Ψ(zαn)+αn2 Ψ(zαn) = Mαn−δαn+αn2 Ψ(zαn),

which implies that αn Ψ(zαn) ≤ 2 (δαn +Mαn
2
−Mαn) and therefore

lim
αn→+∞

αn Ψ(zαn) = 0.

Suppose now that there exists a subsequence of (zαn)αn , not relabeled here, that
converges to ẑ ∈ O. Then lim

αn→+∞
Ψ(zαn) = 0 and by lower semicontinuity and

positivity of Ψ we also get Ψ(ẑ) = 0. Moreover, since

Φ(zαn)− αn Ψ(zαn) = Mαn − δαn ≥ sup
{Ψ(z)=0}

Φ(z)− δαn ,

and Φ is upper semicontinuous, we get by letting αn →∞

sup
{Ψ(z)=0}

Φ(z) ≥ Φ(ẑ) ≥ lim
αn→∞

Mαn ≥ sup
{Ψ(z)=0}

Φ(z),

which forces equality everywhere. this ends the proof. �

In the next theorem, we prove the comparison principle on a bounded open subset
of X. The proof is similar to the proof of the comparison principle in the classical
theory of viscosity. The main difference here is that we use test functions that verify
Definition 3.7.

Theorem 3.12 (Comparison on bounded domains). Assume H satisfies Hypotheses
3.1 and 3.2. Let Ω be an open bounded set of X and set ∂Ω = Ω \ Ω. Consider
u : Ω → R a bounded from above upper semicontinuous subsolution of (3.11), and
v : Ω→ R a bounded from below lower semicontinuous supersolution of (3.11).
Then u ≤ v in ∂Ω implies u ≤ v in Ω.

Proof. Let M := sup
Ω

(u(x)− v(x)). Assume by contradiction that u ≤ v in ∂Ω and

M > 0.
For every α > 0, define ψα : Ω× Ω→ R as

ψα(x, y) = u(x)− v(y)− α

2 d
2(x, y), ∀(x, y) ∈ Ω× Ω.
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Since u and −v are bounded from above and u − v is upper semicontinuous, the
supremum Mα := sup

Ω×Ω
ψα is reached. Let (xα, yα) be such that Mα = ψα(xα, yα).

We have

lim
α→+∞

(Mα − ψα(xα, yα)) = 0, and −∞ < M ≤Mα ≤ sup
Ω

(u) + sup
Ω

(−v) < +∞.

Since Ω is closed and bounded, then it is compact by the assumption of X being
proper. Hence we can take a subsequence ((xαn , yαn))αn that converges as αn → +∞.
We have

lim
αn→+∞

(Mαn − ψαn(xαn , yαn)) = 0, and −∞ < lim
αn→+∞

Mαn < +∞.

Therefore, we can apply Lemma 3.11 via the correspondences

Z = X ×X, O = Ω× Ω, Φ(z) = u(x)− v(y), Ψ(z) = 1
2d

2(x, y),

and we get 
(i) lim

αn→+∞

αn
2 d2(xαn , yαn) = 0,

(ii) lim
αn→+∞

Mαn = M.

It follows that for αn big enough we have xαn , yαn ∈ Ω since u ≤ v in ∂Ω. Thus we
get

H
(
v(yαn), yαn , Dyαn (−αn2 d2(xαn , .))

)
≥ 0 ≥ H

(
u(xαn), xαn , Dxαn (αn2 d2(., yαn))

)
.

(3.12)
Hence, using Hypotheses 3.1 and 3.2 and the above inequality, we get

γ(u(xαn)− v(yαn))
3.2
≤ H

(
u(xαn), xαn , Dxαn (αn2 d2(., yαn))

)
−H

(
v(yαn), xαn , Dxαn (αn2 d2(., yαn))

)
(3.12)
≤ H

(
v(yαn), yαn , Dyαn (−αn2 d2(xαn , .))

)
−H

(
v(yαn), xαn , Dxαn (αn2 d2(., yαn))

)
3.1
≤ Kdbd(xαn , yαn)

(
1 + αn

2 d(xαn , yαn)
)
.

By letting αn → +∞, we get

γM ≤ 0,

a contradiction with M > 0. �
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If Ω is an unbounded open set ofX, then we need the following additional hypothesis
to prove the comparison principle.

Hypothesis 3.3. The Hamiltonian H is such that there exists KL > 0 such that,
for every x ∈ Ω and r ∈ R, we have

∀px, qx ∈ DC1(TxX),
∣∣∣∣H(r, x, px)−H(r, x, qx)

∣∣∣∣ ≤ KL sup
|v|x=1

|px � v − qx � v|.

Remark 3.3.1. Note that the mapping

DC1(TxX) 3 px 7→ sup
|v|x=1

|px � v|

verifies all the axioms of a norm on DC1(TxX).

Remark 3.3.2. Hypothesis 3.3 asserts that the Hamiltonian H is Lipschitz con-
tinuous with respect to the variable px. When X = RN and the test functions
are continuously differentiable, then Hypothesis 3.3 is the same as the Lipschitz
assumption on px usually required for the Hamiltonian in the classical theory of
viscosity.

Theorem 3.13 (Comparison on unbounded domains). Assume H satisfies Hypothe-
ses 3.1, 3.2 and 3.3. Let Ω be an open set of X and set ∂Ω = Ω \Ω. Let u : Ω→ R
be a bounded from above upper semicontinuous subsolution of (3.11), and v : Ω→ R
a bounded from below lower semicontinuous supersolution of (3.11). Then

u ≤ v in ∂Ω implies u ≤ v in Ω.

Proof. LetM := sup
Ω

(u(x)−v(x)). Assume by contradiction thatM > 0 and u ≤ v

in ∂Ω.
Let

ε ∈

0,min

M,
(

γ

γ + 4KL

M
)2
, 1


,

where γ and KL are given in Hypotheses 3.2 and 3.3. Let xε ∈ Ω be such that

u(xε)− v(xε) ≥M − ε > 0.

For α > 0, set

ψα(x, y) = u(x)− v(y)−
(
d2(x, xε) + d2(y, xε)

)
− α

2 d
2(x, y), ∀(x, y) ∈ Ω× Ω.

It is clear that ψα is upper semicontinuous and bounded from above. Set Mα :=
sup
Ω×Ω

ψα. We have

0 < ψα(xε, xε)
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and for all x, y ∈ Ω \B
(
xε,

√
| sup

Ω
(u)|+| sup

Ω
(−v)|

)
we have

ψα(x, y) ≤ 0.

Hence, the supremum of ψα is reached on a compact set. Let (xα, yα) be such that
Mα is reached. We have

lim
α→+∞

(Mα−ψα(xα, yα)) = 0 and −∞ < M−ε ≤Mα ≤ sup
Ω

(u)+sup
Ω

(−v) < +∞.

Since xα, yα are in a compact set, then we can take a subsequence (xαn , yαn) that
converges as αn → +∞ and

lim
αn→+∞

(Mαn − ψαn(xαn , yαn)) = 0, and −∞ < lim
αn→+∞

Mαn < +∞.

Therefore, we can apply Lemma 3.11 via the correspondences

Z = X×X, O = Ω×Ω, Φ(z) = u(x)−v(y)−
(
d2(x, xε)+d2(y, xε)

)
, Ψ(z) = 1

2d
2(x, y),

and we get
(i) lim

αn→+∞

αn
2 d2(xαn , yαn) = 0, and xαn , yαn → x̂ ∈ Ω,

(ii) lim
αn→+∞

Mαn = sup
x∈Ω

u(x)− v(x)− 2d2(x, xε) = u(x̂)− v(x̂)− 2d2(x̂, xε) > 0.

On the other hand, notice first that x̂ ∈ Ω since we have u(x̂)− v(x̂) > 0. It follows
that for αn big enough we have xαn , yαn ∈ Ω since x̂ ∈ Ω. Furthermore, we have

M − ε ≤ u(x̂)− v(x̂)− 2d2(x̂, xε) =⇒ 2d2(x̂, xε) ≤ ε =⇒ d(x̂, xε) ≤
√
ε,

and

H
(
v(yαn), yαn , Dyαn (−αn2 d2(xαn , .)− d2(., xε))

)
≥ 0

0 ≥ H
(
u(xαn), xαn , Dxαn (αn2 d2(., yαn) + d2(., xε))

)
. (3.13)

Hence, it follows from Hypotheses 3.1, 3.2, 3.3 and the inequality above

γ(u(xαn)− v(yαn))
3.2
≤ H

(
u(xαn), xαn , Dxαn (αn2 d2(y.,αn) + d2(., xε))

)
−

H
(
v(yαn), xαn , Dxαn (αn2 d2(., yαn) + d2(., xε))

)
(3.13)
≤ H

(
v(yαn), yαn , Dyαn (−αn2 d2(., xαn)− d2(., xε))

)
−

H
(
v(yαn), xαn , Dxαn (αn2 d2(., yαn) + d2(., xε))

)
≤ Kdbd(xαn , yαn)(1 + αn

2 d(xαn , yαn)) + 2KL(d(xαn , xε) + d(xαn , xε)),
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where the last inequality is obtained thanks to Proposition 3.8.2 and Hypotheses
3.1 and 3.3. Furthermore, notice that we have for all αn

γ(M − ε) ≤ γ(u(xε)− v(xε)) ≤ γ(u(xαn)− v(yαn)).

Whence, by letting αn → +∞, we get

γ(M − ε) ≤ 4KL

√
ε

Moreover, we have
γ(M −

√
ε) ≤ γ(M − ε),

since 0 < ε < 1 by assumption. We get

γ(M −
√
ε) ≤ γ(M − ε) ≤ 4KL

√
ε =⇒

√
ε ≥ γ

γ + 4KL

M.

This is a contradiction with
√
ε <

γ

γ + 4KL

M , which ends the proof. �

3.3.2 Perron’s method
Let Ω be an arbitrary open set of X. Let H : R×DC1(TX)→ R be a Hamiltonian
and ` : ∂Ω → R be a bounded and continuous function. We consider the following
Hamilton Jacobi equation with Dirichlet boundary conditionH(u(x), x,Dxu) = 0, ∀x ∈ Ω,

u(x) = `(x), ∀x ∈ ∂Ω.
(3.14)

We consider the following hypotheses on the Hamiltonian H.

Hypothesis 3.4. The Hamiltonian H is such that:

• (i)− For every φ : Ω→ R such that φ ∈ T EST −, the function

(r, x) 7→ H(r, x,Dxφ)

is lower semicontinuous;

• (ii)− For every φ : Ω→ R such that φ ∈ T EST +, the function

(r, x) 7→ H(r, x,Dxφ)

is upper semicontinuous.

Hypothesis 3.5. The Hamiltonian H is such that for every φ1, φ2 ∈ DC1(TX),
and every (x, r) ∈ Ω× R, we have

∀η ∈ TxX, Dxφ2 � η ≤ Dxφ1 � η =⇒ H(r, x,Dxφ1) ≤ H(r, x,Dxφ2).
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Remark 3.3.3. Hypothesis 3.4 on the Hamiltonian depends on the choice of the
test functions adopted in the definition of viscosity. It is a weaker assumption than
the continuity assumption usually required for H(r, ., .) when X = RN and

T EST − = T EST + = {Twice continuously differentiable functions}.

Indeed, when X = RN and the test functions are twice continuously differentiable,
Hypothesis 3.4 is automatically verified as a consequence of the continuity of the
Hamiltonian and the regularity of the test functions.
Hypothesis 3.5 is needed in the case of general proper CAT(0) spaces in order to
generalize Perron’s method in this setting. More precisely, Hypothesis 3.5 gives us
the following useful result given below.

Lemma 3.14. Let x0 ∈ Ω and φ : Ω→ R be a DClip(Ω) function. Assume that the
Hamiltonian H verifies Hypothesis 3.5.

• If the inequality
H(φ(x0), x0, Dx0φ) ≤ 0,

is verified at x0 ∈ Ω. Then φ is a viscosity subsolution at x0 is the sense of
Definition 3.6.

• Similarly, if the inequality

H(φ(x0), x0, Dx0φ) ≥ 0,

is verified at x0 ∈ Ω. Then φ is a viscosity supersolution at x0 is the sense of
Definition 3.6.

Proof. We will only prove the first part of the lemma. The other part is done in
the exact same way.
Let φtest ∈ T EST − such that φ − φtest attains a local maximum at x0. Then in a
small neighborhood V of x0, we have

∀y ∈ V, φ(y)− φ(x0) ≤ φtest(y)− φtest(x0).

The last inequality implies that for any geodesic β : [0, r′]→ X emanating from x0
we have

lim
t↓0

φ(β(t))− φ(x0)
t

≤ lim
t↓0

φtest(β(t))− φtest(x0)
t

⇐⇒ Dx0φ � β
′
0 ≤ Dx0φtest � β

′
0.

Consequently, by Proposition 3.8.1, the Lipschitz continuity of the differentials gives
us

∀η ∈ Tx0X, Dx0φ � η ≤ Dx0φtest � η.

Finally, by Hypothesis 3.5, we get

H(φ(x0), x0, Dx0φtest) ≤ H(φ(x0), x0, Dx0φ) ≤ 0.

This ends the proof. �
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We will derive existence of the solution of (3.14) from the comparison result proven
in Theorem 3.12. First, we define the half-relaxed limits of a sequence of functions.

Definition 3.8. (Half-relaxed limits).
Let (uε)ε>0 be a family of uniformly locally bounded functions such that uε : Ω→ R.
We define the following half-relaxed limits of the family (uε)ε as:

lim sup∗uε (x) = lim sup
ε→0

Ω3z→x

uε(z);

lim inf∗uε (x) = lim inf
ε→0

Ω3z→x
uε(z).

It is clear from the above definition that lim sup∗uε is an upper semicontinuous
function and that lim inf∗uε is a lower semicontinuous function. Before getting to
Perron’s method, we need two key lemmas. They are classical results when X = RN

(see for example [4]).

Lemma 3.15. Let (vε)ε>0 be a family of uniformly locally bounded upper semicon-
tinuous functions on Ω and v̄ := lim sup∗ vε. Let y ∈ Ω be a strict local maximum
point of v̄ on Ω. Then there exists a subsequence (vεn)εn and a sequence (yεn)εn
such that for all εn, yεn is a local maximum point of vεn in Ω, the sequence (yεn)εn
converges to y and vεn(yεn) converges to v̄(y) as εn → 0.

Proof. Since y is a strict local maximum point of v̄ on Ω, there exists r > 0 such
that B(y, r) ⊂ Ω and

∀ z ∈ B(y, r) \ {x}, v̄(z) < v̄(y).

On the other hand, B(y, r) is compact and vε is upper semicontinuous bounded from
above on B(y, r), therefore for any ε > 0 there exists a maximum point yε of vε on
B(y, r), i.e.,

∀ z ∈ B(y, r), vε(z) ≤ vε(yε).

Hence, by taking the limsup for z → y and ε→ 0, we get:

v̄(y) ≤ lim sup
ε

vε(yε).

Next we consider the right hand side of the last inequality. By extracting a sub-
sequence of (yε)ε, denoted by (yεn)εn , we have lim sup

ε→0
vε(yε) = lim

εn→0
vεn(yεn). Fur-

thermore, since B(y, r) is compact, we may assume that (yεn)εn converges to some
ȳ. But using again the definition of lim sup∗ at ȳ we get,

v̄(y) ≤ lim sup
ε→0

vε(yε) = lim
εn→0

vεn(yεn) ≤ v̄(ȳ).

Since y is a strict maximum point of v̄, we get ȳ = y and vεn(yεn)→ v̄(y). �
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Lemma 3.16. Assume H satisfies Hypothesis 3.4. Let (uε)ε>0 be a family of uni-
formly locally bounded upper semicontinuous functions on Ω, and set u = lim sup∗uε.
If for all ε > 0, uε is a subsolution of (3.14), then u is a subsolution of (3.14).

Proof. Let φ ∈ T EST − be a function such that u− φ attains a local maximum at
x ∈ Ω. Then ψ(.) = φ(.) +d2(., x) is also a T EST − function such that u−ψ attains
a strict local maximum at x. Since ψ is continuous we have u−ψ = lim sup∗(uε−ψ).
Applying the lemma above, there exists a subsequence (xεn)εn such that xεn → x,
uxεn (xεn)→ u(x) and uεn − ψ attains a local maximum at xεn . So we get

H(uεn(xεn), xεn , Dxεn (φ(.) + d2(., x))) = H(uεn(xεn), xεn , Dxεnψ) ≤ 0.

On the other hand, Proposition 3.8.2 implies

Dxd
2(., x) = 0.

Hence, by Hypothesis 3.4 we get

H(u(x), x,Dxφ) ≤ lim inf
εn→0

H(uεn(xεn), xεn , Dxεnψ) ≤ 0,

which is the required result. �

In the next theorem, we derive existence of the solution from the comparison princi-
ple asserted in Theorem 3.13. The proof is similar to the one in the classical theory
of viscosity. The difficulty here is the lack of continuity of the Hamiltonian. How-
ever, with the use of Hypotheses 3.4 and 3.5, we are able to recover the same result
as in the classical setting.

Theorem 3.17 (Perron’s method). Let Ω be an open set of X and set ∂Ω = Ω \Ω.
Suppose that the Hamiltonian H satisfies Hypotheses 3.1, 3.2, 3.3, 3.4 and 3.5.
Assume that there exist u : Ω → R a bounded upper semicontinuous subsolution of
(3.14) and u : Ω→ R a bounded lower semicontinuous supersolution of (3.14). If

lim inf∗u(x) ≥ `(x) ≥ lim sup∗u(x), ∀x ∈ ∂Ω,

then there exists a unique continuous and bounded viscosity solution of (3.14).

Proof. We define the set

S = {h : Ω→ R : u ≤ h ≤ u and h is a subsolution of (3.14)}.

The set S is nonempty since u ∈ S. For x ∈ Ω, we set

u(x) = sup{h(x), h ∈ S}.

We will show that v := lim sup∗ {u} is the viscosity solution of (3.14). First we
show that v is a subsolution. Notice that v is obviously upper semicontinuous. Let
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φ : Ω→ R be a T EST − function such that v−φ attains a local maximum at x0 ∈ Ω.
Without loss of generality, we can suppose that

v(x0) = φ(x0).

By definition of v, there exists a sequence of points xj → x0 and a sequence of
functions uj ∈ S such that

v(x0) = lim
j→∞

uj(xj).

In particular lim sup∗{uj} (x0) ≥ v(x0). On the other hand, by construction we have
v ≥ lim sup∗{uj}. Therefore, at x0 we have lim sup∗{uj} (x0) = v(x0). For the other
points on a small enough neighborhood of x0, we have

φ ≥ v ≥ lim sup∗{uj}.

Therefore, by using Lemma 3.16 on a small enough bounded open neighborhood
of x0, we get that lim sup∗{uj} is a subsolution at x0, since Hypothesis 3.4 holds.
Therefore, by definition we have

H(v(x0), x0, Dx0φ) ≤ 0.

This shows that v is a subsolution at x0. Now we show that v∗ := lim inf∗v is a
supersolution. We argue by contradiction.
Suppose that there exists a point x0 ∈ Ω and a function ψ ∈ T EST + such that
v∗ − ψ attains a local minimum at x0, but

H(v∗(x0), x0, Dx0ψ) < 0.

Without loss of generality, we can suppose that ψ(x0) = v∗(x0). Thus we have

H(ψ(x0), x0, Dx0ψ) < 0.

So, by Hypothesis 3.5, ψ is a strict viscosity subsolution of (3.14) at x0. Indeed, let
ψtest ∈ T EST − such that ψ − ψtest attains a local maximum at x0. Then for all
y ∈ X in a small enough neighborhood of x0, we have

ψ(y)− ψ(x0) ≤ ψtest(y)− ψtest(x0).

This implies that for any geodesic β : [0, r′]→ X emanating from x0 we have

lim
t↓0

ψ(β(t))− ψ(x0)
t

≤ lim
t↓0

ψtest(β(t))− ψtest(x0)
t

⇐⇒ Dx0ψ � β
′
0 ≤ Dx0ψtest � β

′
0.

Consequently, by Proposition 3.8.1, the Lipschitz continuity of the differentials gives
us

∀η ∈ Tx0X, Dx0ψ � η ≤ Dx0ψtest � η.
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Hence by Hypothesis 3.5, we get

H(ψ(x0), x0, Dx0ψtest) ≤ H(ψ(x0), x0, Dx0ψ) < 0.

Furthermore from Hypothesis 3.4, it is also a strict subsolution of (3.14) in a small
enough neighborhood of x0 by upper semicontinuity of the Hamiltonian. Indeed,
the function

g : x 7→ H(ψ(x), x,Dxψ)

is upper semicontinuous. So the set {x ∈ Ω : g(x) < 0} is open. In particular,
there exists a small enough neighborhood of x0 such that for all x ∈ X that belong
to this neighborhood, we have

H(ψ(x), x,Dxψ) < 0.

Theorefore, for any ψtest ∈ T EST − such that ψ − ψtest attains a local maximum at
x ∈ X belonging to a small enough neighborhood of x0, we get

H(ψ(x), x,Dxψtest) ≤ H(ψ(x), x,Dxψ) < 0.

Moreover, for δ > 0 small enough, ψ̃ = ψ + δ is a subsolution on a small enough
neighborhood of x0 denoted by B(x0, r) ⊂ Ω, with r > 0, since the function

s 7→ H(s, x,Dxψ),

is upper semicontinuous also by Hypothesis 3.4.

We have ψ̃(x0) > v∗(x0). This implies that there are points at every neighborhood
of x0 such that ψ̃(x) > v(x). Let

w(x) :=

max{v, ψ̃}(x), if x ∈ B(x0,
r

2),
v(x), otherwise.

By Lemma 3.16, w a subsolution of (3.14). Consequently, we have

v, w ∈ S.

However, w > v at some points, a contradiction.
Therefore, v∗ is a viscosity supersolution of (3.14). Finally, observe that

lim inf∗u(x) ≤ lim inf∗v(x) ≤ lim sup∗v(x) ≤ lim sup∗u(x), ∀x ∈ ∂Ω,

implies that v(x) = `(x) on ∂Ω. In the end, by Theorem 3.12, v is continuous,
bounded and is the unique viscosity solution to equation (3.14). �
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3.3.3 Examples
We give hereafter some examples showing the degree of generality of this new setting.
The first two examples are considered in the case where the state space is RN , with
the change being that we use different sets of test functions from the classical theory.
The third example treats the case of an Eikonal type equation in a general proper
CAT(0) space which is geodesically extendible. The last example presents the case of
an Eikonal type equation in the presence of an obstacle in a general proper CAT(0)
space which is geodesically extendible. This last example shows that this new setting
allows to treat nonconvex Hamiltonians as well.

Example 3.18. For (X, d) = (RN , dRN ), with dRN the Euclidean distance, consider
the Hamiltonian

H(u(x), x,Dxu) := γu(x) + sup
α∈A
{−Dxu � f(x, α) + b(x, α) }, x ∈ RN ,

where γ > 0, A is a compact metric space and f : RN × A → RN is a Lipschitz
bounded function. The function b : RN × A → R is a Lipschitz bounded function.
We consider

T EST − = {Locally Lipschitz and locally semiconvex functions of RN }.

T EST + = {Locally Lipshitz and locally semiconcave functions of RN }.

T EST − and T EST + satisfy all the requirements of Definition 3.7. Furthermore, it
is straightforward to check that the Hamiltonian H satisfies Hypotheses 3.1, 3.2, 3.3
and 3.5.
It remains to prove that the Hamiltonian H satisfies Hypothesis 3.4. We start by
Hypothesis 3.4-(i).
Let φ ∈ T EST −. φ is a locally Lipschitz and semiconvex function. Hence it is
Clarke regular [9, Definition 10.12]. Therefore, the function

(x, v) 7→ Dxφ � v

is upper semicontinuous [9, Proposition 10.2]. Consequently, the function

(x, α) 7→ −Dxφ � f(x, α)

is lower semicontinuous. Finally the function

x 7→ sup
α∈A
{−Dxφ � f(x, α) + b(x, α)}

is lower semicontinuous as the pointwise supremum of a family of lower semicontin-
uous functions, which implies Hypothesis 3.4-(i).
Now we turn our attention to Hypothesis 3.4-(ii). Let φ ∈ T EST +. φ is a locally
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Lipschitz and locally semiconcave function. So −φ is a locally Lipschitz and locally
semiconvex function. Hence it is Clarke regular, i.e. the function

(x, v) 7→ −Dxφ � v

is upper semicontinuous. Consequently, the function

(x, α) 7→ −Dxφ � f(x, α) + b(x, α)

is also upper semicontinuous. Now, let x ∈ RN and (xn)n ⊂ RN be a sequence
converging to x. Let (αn)n ⊂ A be a sequence such that

∀n ∈ N, sup
α∈A
{−Dxnφ � f(xn, α) + b(xn, α)} = −Dxnφ � f(xn, αn) + b(xn, αn).

Since A is a compact metric space, then we can assume, without loss of generality,
that the sequence (αn)n converges to ᾱ ∈ A. Finally, we have

sup
α∈A
{−Dxφ � f(x, α) + b(x, α)} ≥ −Dxφ � f(x, ᾱ) + b(x, ᾱ) ≥

lim sup
xn→x
αn→ᾱ

−Dxnφ �f(xn, αn)+b(xn, αn) ≥ lim sup
xn→x

sup
α∈A
{−Dxnφ �f(xn, α)+b(xn, α)}.

This implies Hypothesis 3.4-(ii).
On the other hand, u(x) = −C, u(x) = C are a bounded upper semicontinuous sub-
solution and a bounded lower semicontinuous supersolution respectively for C > 0
big enough. Consequently, Theorem 3.17 applies and there exists a unique continu-
ous and bounded viscosity solution to equation (3.14), with the Hamiltonian defined
above.

Example 3.19. For (X, d) = (RN , dRN ), with dRN the Euclidean distance, consider
the Hamiltonian

H(u(x), x,Dxu) := γu(x) + inf
α∈A

sup
β∈B
{−Dxu � f(x, α, β) + b(x, α, β) }, x ∈ RN ,

where γ > 0, A,B are compact metric spaces and f : RN × A × B → RN is a
Lipschitz bounded function. The function b : RN × A × B → R is a Lipschitz
bounded function. We consider

T EST − = {Locally Lipschitz and locally semiconvex functions of RN }.

T EST + = {Locally Lipshitz and locally semiconcave functions of RN }.

T EST − and T EST + satisfy all the requirements of Definition 3.7. Furthermore, it
is straightforward to check that the Hamiltonian H satisfies Hypotheses 3.1, 3.2, 3.3
and 3.5.
It remains to prove that the Hamiltonian H satisfies Hypotheses 3.4. We start by
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Hypothesis 3.4-(i).

Let φ ∈ T EST −. φ be a locally Lipschitz and semiconvex function. Hence it is
Clarke regular [9, Proposition 10.2 and Definition 10.12]. As we have seen from
Example 3.18, we have

(x, α) 7→ sup
β∈B
{−Dxφ � f(x, α, β) + b(x, α, β)},

is lower semicontinuous. Now, let (xn)n ⊂ RN be a sequence converging to x ∈ RN .
Let (αn)n ⊂ A be a sequence such that for all n ∈ N we have

inf
α∈A

sup
β∈B
{−Dxnφ � f(xn, α, β) + b(xn, α, β)} = sup

β∈B
−Dxnφ � f(xn, αn, β) + b(xn, αn, β).

Since A is a compact metric space, then we can assume, without loss of generality,
that the sequence (αn)n converges to some ᾱ ∈ A. Finally, we have

inf
α∈A

sup
β∈B
{−Dxφ � f(x, α) + b(x, α)} ≤ sup

β∈B
{−Dxφ � f(x, ᾱ, β) + b(x, ᾱ, β)}

≤ lim inf
xn→x
αn→ᾱ

sup
β∈B
{−Dxnφ � f(xn, αn, β) + b(xn, αn, β)}

≤ lim inf
xn→x

inf
α∈A

sup
β∈B
{−Dxnφ � f(xn, α, β) + b(xn, α, β)}.

This implies Hypothesis 3.4-(i).
Next, we turn our attention to Hypothesis 3.4-(ii). Let φ ∈ T EST +. φ is a locally
Lipschitz and semiconcave function. Therefore, from Example 3.18, we have

x 7→ sup
β∈B
{−Dxφ � f(x, α, β) + b(x, α, β)},

is upper semicontinuous. Hence, the function

x 7→ inf
α∈A

sup
β∈B
−Dxφ � f(x, α, β),

is also upper semicontinuous since it is the pointwise infimum of a family of upper
semicontinuous functions, which implies Hypothesis 3.4-(ii).
On the other hand, u(x) = −C and u(x) = C are a bounded upper semicontinu-
ous subsolution and a bounded lower semicontinuous supersolution respectively for
C > 0 big enough. Consequently, Theorem 3.17 applies and there exists a unique
continuous viscosity solution to equation (3.14).

Remark 3.3.4. In the above two examples, the only change we made from the clas-
sical theory of viscosity, was to change the sets of test functions in RN . The interest
here is limited, as we could also have chosen the test functions to be locally twice
continuously differentiable functions for both the supersolution and the subsolution
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in the current setting as in the classical theory of viscosity. Indeed, a result due
to Alexandrov [88] shows that locally twice continuously differentiable functions are
locally DC functions. Actually they are locally both semiconvex and semiconcave
functions. In other words, twice continuously differentiable functions constitute a
subset of the intersection between the sets of locally semiconvex and semiconcave
functions in RN . So the present setting and the classical theory of viscosity coincide
in RN .

Example 3.20 (Eikonal type equation in proper geodesically extendible CAT(0)
spaces). Let (X, d) be a proper, geodesically extendible CAT(0) space. All spaces
given in Examples, 3.4, 3.5 and 3.6 verify this condition. Consider the Hamiltonian

H(u(x), x,Dxu) := γu(x) + sup
v∈TxX
|v|x=1

{−Dxu � v} − b(x), x ∈ X,

where γ > 0 and b : X → R is a Lipschitz function of constant Lip(b) and bounded.
We consider

T EST − = {Locally Lipschitz and locally semiconvex functions of X }.

T EST + = {Locally Lipshitz and locally semiconcave functions of X }.
T EST − satisfies all the requirements of Definition 3.7.
First, we prove that the above Hamiltonian verifies Hypothesis 3.1. Let α > 0,
r ∈ R and x, y ∈ X. We have by Proposition 3.8.2

H(r, x,−Dx(αd2(., y)))−H(r, y,Dy(αd2(x, .))) =

d(x, y)
(

sup
v∈TxX
|v|x=1

{−2α〈v, ↑yx〉x} − sup
v∈TyX
|v|y=1

{2α〈v, ↑xy〉y}
)

+ b(y)− b(x).

By inequality (3.8c), we have

sup
v∈TxX
|v|x=1

{−2α〈v, ↑yx〉x} ≤ sup
v∈TxX
|v|x=1

{2α |v|x | ↑yx|x} = 2α,

and
sup
v∈TyX
|v|y=1

{2α〈v, ↑xy〉y} = 2α, reached at v =↑xy .

Hence we have

H(r, x,−Dx(αd2(., y)))−H(r, y,Dy(αd2(x, .))) ≤ b(y)− b(x) ≤ Lip(b)d(x, y),

which implies the result.
Hypotheses 3.2, 3.3 and 3.5 are straightforward. It remains to prove that the Hamil-
tonian verifies Hypotheses 3.4. We start by Hypothesis 3.4-(i). The proof is inspired
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from [56, Lemma 1.3.4].
Let φ ∈ T EST −. So φ is a locally Lipschitz and locally semiconvex function which
implies that ψ := −φ is a locally Lipschitz and locally semiconcave function.
Let x ∈ X. Suppose that ψ is 2λ-concave for some λ ∈ R around x.
Let ε > 0 and let y ∈ X near x such that

y 6= x, |λ|d(x, y) < ε, and ψ(y)− ψ(x)
d(x, y) ≥ sup

v∈TxX
|v|x=1

{Dxψ � v} − ε.

Let (xn)n and (yn)n be two sequences converging to x and y respectively. Let
[0, d(xn, yn)] 3 t 7→ Gxn,yn

t be the unit speed geodesic connecting xn and yn. By
definition, the 2λ-concavity of ψ implies that the real-to-real function

[0, d(xn, yn)] 3 t 7→ ψ(Gxn,yn
t )− λt2

is concave. Therefore, the incremental ratio

(0, d(xn, yn)] 3 t 7→ ψ(Gxn,yn
t )− λt2 − ψ(xn)

t
.

is non increasing. Hence, the 2λ-concavity of ψ gives

Dxnψ� ↑ynxn≥
ψ(yn)− ψ(xn)− λd2(xn, yn)

d(xn, yn) ≥ ψ(y)− ψ(x)
d(x, y) − ε,

where the last inequality is obtained when n is large enough. Hence we get

sup
v∈TxnX
|v|xn=1

{Dxnψ � v} ≥ Dxnψ� ↑ynxn≥ sup
v∈TxX
|v|x=1

{Dxψ � v} − 2ε.

By taking the infimum limit in the left hand side of the last inequality, we get

lim inf
xn→x∈X
rn→r∈R

γrn + sup
v∈TxnX
|v|xn=1

{−Dxnφ � v} − b(xn) ≥ γr + sup
v∈TxX
|v|x=1

{−Dxφ � v} − b(x)− 2ε.

Since ε is arbitrary, we get that Hypothesis 3.4-(i) is verified.
Now we prove Hypothesis 3.4-(ii). Let φ ∈ T EST +. So φ is a locally Lipschitz and
locally semiconcave function which implies that ψ := −φ is a locally Lipschitz and
locally semiconvex function.
Let x ∈ X. Suppose that ψ is 2λ-convex around x for some λ ∈ R . Let 0 < ε < M
be two stricly positive constants, (xn)n ⊂ X be a sequence converging to x and
(yn)n ⊂ X be a sequence such that

d(x, yn) ≤M, and ∀n ∈ N, Dxnψ� ↑ynxn≥ sup
v∈TxnX
|v|xn=1

{Dxnψ � v} − ε.
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Since (X, d) is geodesically extendible, we can also always choose yn such that

d(x, yn) ≥ ε, ∀n ∈ N.

Since (yn)n ⊂ B(x,M), then we can suppose, without loss of generality, that it
converges to some y ∈ X. Moreover y 6= x since we have d(x, yn) ≥ ε for all n ∈ N.
Let t 7→ Gxn,yn

t be the unique unit speed geodesic between xn and yn.
By the extendibility property of X, we can extend all geodesics Gxn,yn to be defined
in the same interval [0, K], with K > M large enough. Then by Arzela–Ascoli
theorem [52, Theorem 2.5.14] there exists a converging subsequence (not relabeled
here) of the sequence of curves (Gxn,yn)n. Moreover, by [52, Proposition 2.5.17], the
limit curve is Gx,y; the unit speed geodesic starting from x and passing through y,
and defined in [0, K].
Furthermore, the 2λ-convexity of ψ gives

sup
v∈TxnX
|v|xn=1

{Dxnψ � v} − ε ≤ Dxnψ� ↑ynxn= Dxnψ� ↑G
xn,yn
t

xn

≤ ψ(Gxn,yn
t )− ψ(xn)− λd2(xn, Gxn,yn

t )
d(xn, Gxn,yn

t )

≤ ψ(Gx,y
t )− ψ(x)
d(x,Gx,y

t ) + ε,

where the last inequality holds when taking t small enough and n big enough. Hence
we get

lim sup
xn→x

sup
v∈TxnX
|v|xn=1

{Dxnψ � v} ≤ lim
t↓0

ψ(Gx,y
t )− ψ(x)
d(x,Gx,y

t ) + 2ε = lim
t↓0

ψ(Gx,y
t )− ψ(x)
t

+ 2ε

≤ sup
v∈TxX
|v|x=1

{Dxψ � v}+ 2ε.

Finally we get

lim sup
xn→x∈X
rn→r∈R

γrn + sup
v∈TxnX
|v|xn=1

{Dxnψ � v} − b(xn) ≤ γr + sup
v∈TxX
|v|x=1

{Dxψ � v} − b(x) + 2ε,

wihch is equivalent to

lim sup
xn→x∈X
rn→r∈R

γrn + sup
v∈TxnX
|v|xn=1

{−Dxnφ � v} − b(xn) ≤ γr + sup
v∈TxX
|v|x=1

{−Dxφ � v} − b(x) + 2ε.

Since ε is arbitrary, we get the result.
In summary, the Hamiltonian H verifies all Hypotheses 3.1, 3.2, 3.3, 3.4 and 3.5.
Furthermore, the functions u(x) = −C, u(x) = C are bounded upper semicontin-
uous subsolution and bounded lower semicontinuous supersolution respectively for
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C > 0 big enough. Hence by Theorem 3.17, there exists a unique bounded and
continuous viscosity solution to the Hamilton Jacobi equation

H(u(x), x,Dxu) = 0, ∀x ∈ X.

Remark 3.3.5. Let us take the proper, geodesically extendible CAT(0) space given
in Example 3.4:

•
X1

X2

A

where X1 and X2 are the following two proper CAT(0) spaces:X1 := {(x1, x2, x3) ∈ R3 : x3 = 0},
X2 := {(x1, x2, x3) ∈ R3 : x1 = x2 = 0},

and A := {0}. The glued space

X := X1
⊔
A

X2,

along A is a proper, geodesically extendible CAT(0) space when endowed with the
following distance:

∀x, y ∈ X, d(x, y) :=

|x− y|, if ∃ i ∈ {1, 2} : x, y ∈ Xi,

|x|+|y|, otherwise,

where |.| is the Euclidean norm on R3. The tangent cone at a point x ∈ X is:

TxX =


X1 if x ∈ X1 \ A,
X2 if x ∈ X2 \ A,
X if x ∈ A.
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Let γ > 0 and b : X → R be a Lipschitz bounded function. The equation studied
in Example 3.20 has the following expression:

γu(x) + sup
v∈X1
|v|=1

{−Dxu � v} − b(x) = 0, if x ∈ X1 \ A,

γu(x) + sup
v∈X2
|v|=1

{−Dxu � v} − b(x) = 0, if x ∈ X2 \ A,

γu(x) + sup
v∈X
|v|=1

{−Dxu � v} − b(x) = 0, if x ∈ A.

From Example 3.20, the above equation admits a unique continuous and bounded
viscosity solution.
Remark 3.3.6. Let us take the proper, geodesically extendible CAT(0) space given
in Example 3.5:

•
X1

X2

A

where X1 and X2 are the following two proper CAT(0) spaces:X1 := {(x1, x2, x3) ∈ R3 : x3 = 0},
X2 := {(x1, x2, x3) ∈ R3 : x1 = x2 = 0, x3 ≥ 0},

and A := {0}. The glued space

X := X1
⊔
A

X2,

along A is a proper, geodesically extendible CAT(0) space when endowed with the
following distance:

∀x, y ∈ X, d(x, y) :=

|x− y|, if ∃ i ∈ {1, 2} : x, y ∈ Xi,

|x|+|y|, otherwise.

The tangent cone at a point x ∈ X is:

TxX =


X1 if x ∈ X1 \ A,
Re3 if x ∈ X2 \ A,
X if x ∈ A.
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Let γ > 0 and b : X → R be a Lipschitz bounded function. The equation studied
in Example 3.20 has the following expression:

γu(x) + sup
v∈X1
|v|=1

{−Dxu � v} − b(x) = 0, if x ∈ X1 \ A,

γu(x) + sup
v∈Re3
|v|=1

{−Dxu � v} − b(x) = 0, if x ∈ X2 \ A,

γu(x) + sup
v∈X
|v|=1

{−Dxu � v} − b(x) = 0, if x ∈ A.

From Example 3.20, the above equation admits a unique continuous and bounded
viscosity solution.

Example 3.21 (Nonconvex Hamiltonian). Let (X, d) be a proper, geodesically ex-
tendible CAT(0) space. Consider the Hamiltonian

H(u(x), x,Dxu) := min
{
γu(x) + sup

v∈TxX
|v|x=1

{−Dxu � v}− b1(x), γu(x)− b2(x)
}
, x ∈ X,

where γ > 0 and b1 : X → R and b2 : X → R are Lipschitz and bounded functions.
From Example 3.20, the Hamiltonian

H1(u(x), x,Dxu) := γu(x) + sup
v∈TxX
|v|x=1

{−Dxu � v} − b1(x),

verifies all Hypotheses 3.1, 3.2, 3.3, 3.4 and 3.5. Furthermore, it is easy to check
that the Hamiltonian

H2(u(x), x,Dxu) := γu(x)− b2(x),

also verifies all Hypotheses 3.1, 3.2, 3.3, 3.4 and 3.5. Consequently, the Hamitlonian
H verifies all the mentioned Hypotheses as well since it is in the form of a minimum
of two Hamiltonians that verify the same Hypotheses. Furthermore, the functions
u(x) = −C, u(x) = C are bounded upper semicontinuous subsolution and bounded
lower semicontinuous supersolution respectively for C > 0 big enough. Hence, by
Theorem 3.17, there exists a unique bounded and continuous viscosity solution to
the equation

H(u(x), x,Dxu) = 0, ∀x ∈ X.

Remark 3.3.7. Let e1, e2 and e3 be three unit vectors of R2. Let us take the proper,
geodesically extendible CAT(0) obtained by gluing together three half-lines, denoted
by X1, X2 and X3 along the origin point A = {0}:

X1 := [0,+∞)e1,

X2 := [0,+∞)e2,

X3 := [0,+∞)e3.



113 3.3. Stationary Hamilton Jacobi equations in proper CAT(0) spaces

A

X1X2

X3

The glued space

X :=
⊔
A

Xi,

along A is a proper, geodesically extendible CAT(0) space when endowed with the
following distance:

∀x, y ∈ X, d(x, y) :=

|x− y|, if ∃ i ∈ {1, 2, 3} : x, y ∈ Xi,

|x|+|y|, otherwise.

The tangent cone at a point x ∈ X is:

TxX =

Rei if x ∈ Xi \ A, and = 1, 2, 3,
X if x ∈ A.

Let γ > 0 and b1 : X → R and b2 : X → R be Lipschitz and bounded functions.
The equation studied in Example 3.21 has the following expression:



min
{
γu(x) + sup

v∈Rei
|v|=1

{−Dxu � v} − b1(x), γu(x)− b2(x)
}

= 0, if x ∈ Xi \ A,

min
{
γu(x) + sup

v∈X
|v|=1

{−Dxu � v} − b1(x), γu(x)− b2(x)
}

= 0, if x ∈ A.

From Example 3.21, the above equation admits a unique continuous and bounded
viscosity solution.

Remark 3.3.8. Let us take the proper, geodesically extendible CAT(0) space given
in Example 3.5:
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•
X1

X2

A

where X1 and X2 are the following two proper CAT(0) spaces:X1 := {(x1, x2, x3) ∈ R3 : x3 = 0},
X2 := {(x1, x2, x3) ∈ R3 : x1 = x2 = 0, x3 ≥ 0},

and A := {0}. The glued space

X := X1
⊔
A

X2,

along A is a proper, geodesically extendible CAT(0) space when endowed with the
following distance:

∀x, y ∈ X, d(x, y) :=

|x− y|, if ∃ i ∈ {1, 2} : x, y ∈ Xi,

|x|+|y|, otherwise.

The tangent cone at a point x ∈ X is:

TxX =


X1 if x ∈ X1 \ A,
Re3 if x ∈ X2 \ A,
X if x ∈ A.

Let γ > 0 and b1 : X → R and b2 : X → R be Lipschitz and bounded functions.
The equation studied in Example 3.21 has the following expression:

min
{
γu(x) + sup

v∈X1
|v|=1

{−Dxu � v} − b1(x), γu(x)− b2(x)
}

= 0, if x ∈ X1 \ A,

min
{
γu(x) + sup

v∈Re3
|v|=1

{−Dxu � v} − b1(x), γu(x)− b2(x)
}

= 0, if x ∈ X2 \ A,

min
{
γu(x) + sup

v∈X
|v|=1

{−Dxu � v} − b1(x), γu(x)− b2(x)
}

= 0, if x ∈ A.

From Example 3.21, the above equation admits a unique continuous and bounded
viscosity solution.



115
3.4. Time dependent Hamilton Jacobi equations in proper CAT(0)

spaces

3.4 Time dependent Hamilton Jacobi equations
in proper CAT(0) spaces

In this section we discuss time dependent Hamilton Jacobi equations in a proper
CAT(0) space (X, d). First, notice that by means of Lemma 3.2, the product space
[0,+∞) × X is also a CAT(0) space. One could consider the time variable as
being one of the state variables and use the setting developped for the stationary
case. Although it is possible to do it, we choose to treat the time dependent case
separately, as it has its own specificities. Let H : DC1(TX)→ R be a Hamiltonian
and ` : X → R be a bounded and continuous function. We consider the following
Hamilton Jacobi equation:∂tu+H(x,Dxu) = 0, ∀ (t, x) ∈ (0,+∞)×X,

u(0, x) = `(x), x ∈ X,
(3.15)

where u : [0,+∞) × X is a Lipschitz and DC function. The term ∂tu is the usual
right derivative with respect to time, i.e.

∂tu = lim
r↓0

u(t+ r, x)− u(t, x)
r

.

Let C2((0,+∞)) be the space of twice continuously differentiable functions of (0,+∞).
We will take test functions that are C2((0,+∞)) with respect to the time variable
and in the class of DC functions with respect to the space variable.

Definition 3.9. Let T EST − and T EST + be two subsets of DClip((0,∞)×X) such
that:

T EST − := {(t, x) 7→ φ1(t) + φ2(x) : φ1 is C2((0,+∞)) and φ2 is locally
Lipschitz and locally semiconvex},

and

T EST + := {(t, x) 7→ φ1(t) + φ2(x) : φ1 is C2((0,+∞)) and φ2 is locally
Lipschitz and locally semiconcave}.

3.4.1 Comparison principle
Next, we prove a comparison result in the time dependent case. Since the Hamilto-
nian in (3.15) does not depend on u(x), there is no need to assume Hypothesis 3.2
on the Hamiltonian. By assuming only Hypotheses 3.1 and 3.3, we can prove the
comparison principle for the time dependent case, as the following theorem shows.
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Theorem 3.22. Assume H satisfies Hypotheses 3.1 and 3.3. Let u : [0,+∞) ×
X → R be a bounded from above upper semicontinuous subsolution of (3.15), and
v : [0,+∞) ×X → R a bounded from below lower semicontinuous supersolution of
equation (3.15). Then it holds:

sup
[0,+∞)×X

(u− v)+ ≤ sup
{0}×X

(u− v)+,

where (r)+ = max(r, 0).

Proof. Without loss of generality, we can suppose that sup
{0}×X

(u − v)+ = 0. Let

M := sup
[0,+∞)×X

(u(t, x)− v(t, x)). It suffices to prove that M ≤ 0.

Assume by contradiction that M > 0. Let λ > 0 sufficiently small so that

sup
[0,+∞)×X

(u(t, x)− v(t, x)− λt) > 0.

Let (t0, x0) ∈ [0,+∞)×X) be such that

u(t0, x0)− v(t0, x0)− λt0 > 0.

Let ε ∈ (0,M). For every α > 0, define ψα : [0,+∞)2 ×X2 → R as

ψα(t, s, x, y) = u(t, x)−v(s, y)−λ2 (t+s)−ε2
(
d2(x, x0)+d2(y, x0)

)
−α2 |t−s|

2−α2 d
2(x, y).

It is clear that ψα is upper semicontinuous and bounded from above. We denote by
Mα := supψα, where the supremum is taken over [0,+∞)2 ×X2. Furthermore, we
have

0 < ψα(t0, t0, x0, x0),

and for all x, y /∈ B

x0,

√
2 | sup(u)|+| sup(−v)|

ε

 or t, s ≥ 2 | sup(u)|+| sup(−v)|
λ

we have
ψα(t, s, x, y) ≤ 0.

Hence, the supremum of ψα is reached in a compact set independent of α. Let
(tα, sα, xα, yα) be such that Mα = ψα(tα, sα, xα, yα). We have

lim
α→+∞

(Mα − ψα(tα, sα, xα, yα)) = 0

and

−∞ < u(t0, x0)− v(t0, x0)− λt0 ≤Mα ≤ sup
[0,+∞)×X

(u) + sup
[0,+∞)×X

(−v) < +∞.

Since (tα, sα, xα, yα) is in a compact set, we take a subsequence (tαn , sαn , xαn , yαn)
such that (tαn , sαn , xαn , yαn) converges as αn → +∞ and
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lim
αn→+∞

(Mαn − ψαn(tαn , sαn , xαn , yαn)) = 0, and −∞ < lim
αn→+∞

Mαn < +∞.

Therefore, we can apply Lemma 3.11 via the correspondences

Z = O = [0,+∞)2×X2, Φ(z) = u(t, x)−v(s, y)−λ2 (t+s)−ε2
(
d2(x, x0)+d2(y, x0)

)
,

Ψ(z) = 1
2 |t− s|

2 + 1
2d

2(x, y),

and we get 
(i) lim

αn→+∞

αn
2 d2(xαn , yαn) + αn

2 |tαn − sαn|
2 = 0,

and xαn , yαn → x̂ ∈ X, tαn , sαn → t̂ ∈ [0,+∞),
(ii) lim

αn→+∞
Mαn ≥ u(t0, x0)− v(t0, x0)− λt0 > 0.

Moreover, we have

0 < u(t0, x0)− v(t0, x0)− λt0 ≤ u(t̂, x̂)− v(t̂, x̂)− λt̂− εd2(x̂, x0). (3.16)

This implies
εd2(x̂, x0) ≤M =⇒ εd(x̂, x0) ≤

√
M ε.

On the other hand, notice that t̂ 6= 0 since u(t̂, x̂) − v(t̂, x̂) > 0. It follows that for
αn big enough we have tαn 6= 0. Furthermore, we have

− λ

2 + αn(tαn − sαn) +H
(
yαn , Dyαn (−αn2 d2(xαn , .)−

ε

2d
2(., xε))

)
≥ 0 ≥

λ

2 + αn(tαn − sαn) +H
(
xαn , Dxαn (αn2 d2(., yαn) + ε

2d
2(., xε))

)
. (3.17)

Hence, it follows from Hypotheses 3.1 and 3.3 and the inequality above

λ
(3.17)
≤ H

(
yαn ,−Dyαn (αn2 d2(xαn , .) + ε

2d
2(., xε))

)
−H

(
xαn , Dxαn (αn2 d2(., yαn) + ε

2d
2(., xε))

)
3.1, 3.3
≤ Kdbd(xαn , yαn)(1 + αn

2 d(xαn , yαn)) +KLε(d(yαn , x0) + d(xαn , x0)).

By letting αn → +∞, we get

λ ≤ 2KL

√
M ε.

The last inequality is valid for any 0 < ε < M , a contradiction. �
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3.4.2 Perron’s method
Next, we prove Perron’s method on the product space [0,+∞) × X. First, notice
that if we assume that the Hamiltonian H verifies Hypothesis 3.4, then the same
hypothesis is verified by the full Hamiltonian

∂tu+H(x,Dxu),

in the product space [0,+∞)×X since it is a CAT(0) space and the test functions
chosen in Definition 3.9 are locally continuously differentiable with respect to the
time variable.

Theorem 3.23. Let Ω = (0,+∞)×X and set ∂Ω = {0} ×X. Assume H satisfies
Hypotheses 3.1 and 3.3. Suppose that there exist u : Ω → R a locally bounded and
bounded from above upper semicontinuous subsolution of (3.15) and u : Ω → R
a locally bounded and bounded from below lower semicontinuous supersolution of
(3.15) such that

lim inf∗ u(t, x) ≥ `(x) ≥ lim sup∗ u(t, x), ∀(t, x) ∈ ∂Ω.

Then there exists a unique continuous viscosity solution of (3.15).

Proof. We define the set

S = {h : Ω→ R : u ≤ h ≤ u and h is a subsolution of (3.15)}.

The set S is nonempty since u ∈ S. For x ∈ Ω, we set

u(t, x) = sup{h(t, x), h ∈ S}.

We will show that v := lim sup∗ {u} is the viscosity solution of (3.15). First we
show that v is a subsolution. Notice that v is obviously upper semicontinuous. Let
φ : Ω → R be a T EST − function such that v − φ attains a local maximum at
(t0, x0) ∈ Ω. Without loss of generality, we can suppose that

v(t0, x0) = φ(t0, x0).

By definition of v, there exists a sequence of points (tj, xj)→ x0 and a sequence of
functions uj ∈ S such that

v(t0, x0) = lim
j→∞

uj(tj, xj).

In particular lim sup∗{uj} (t0, x0) ≥ v(t0, x0). On the other hand, by construction
we have v ≥ lim sup∗{uj}. Therefore, at (t0, x0) we have lim sup∗{uj} (t0, x0) =
v(t0, x0). For the other points on a small enough neighborhood of (t0, x0), we have

φ ≥ v ≥ lim sup∗{uj}.



119
3.4. Time dependent Hamilton Jacobi equations in proper CAT(0)

spaces

Therefore, by using Lemma 3.16 on a small enough bounded open neighborhood of
(t0, x0), we get that lim sup∗{uj} is a subsolution at (t0, x0), since Hypothesis 3.4
holds. Therefore, by definition we have

∂t0φ+H(x0, Dx0φ) ≤ 0.

This shows that v is a subsolution at (t0, x0). Now we show that v∗ := lim inf∗v is
a supersolution. We argue by contradiction.
Suppose that there exists a point (t0, x0) ∈ Ω and a function ψ ∈ T EST + such that
v∗ − ψ attains a local minimum at (t0, x0), but

∂t0ψ +H(x0, Dx0ψ) < 0.

By Hypothesis 3.4 and the continuity of t 7→ ∂tψ, we get that the function

(t, x) 7→ ∂tψ +H(x,Dxψ)

is upper semicontinuous. Hence, on a small open neighborhood of (t0, x0), denoted
by (t0 − r, t0 + r)×B(x0, r) we have

∀(t, x) ∈ (t0 − r, t0 + r)×B(x0, r), ∂tψ +H(Dxψ) < 0.

Furthermore, by Hypothesis 3.5, ψ is a strict viscosity subsolution of (3.15) on
(t0 − r, t0 + r)×B(x0, r).
Indeed, let ψ− ∈ T EST − such that ψ − ψ− attains a locall maximum at (t, x) ∈
(t0 − r, t0 + r) × B(x0, r). Notice that since ψ ∈ T EST + and ψ− ∈ T EST −, then
they are of the from

ψ(t, x) = f(t) + g(x), ψ−(t, x) = f−(t) + g−(x),

where f and f− are twice continuously differentiable functions, and g and g− are
locally Lipschitz and locally semiconcave and semiconvex respectively. we have for
all (s, y) in a small neighborhood of (t, x):

f(t) + g(x)− (f−(t) + g−(x)) ≥ f(s) + g(y)− (f−(s) + g−(y)) .

It follows from the above inequality that we have for all s in a small neighborhood
of t:

f(t)− f−(t) ≥ f(s)− f−(s),

and for all y in a small neighborhood of x we get

g(x)− g−(x) ≥ g(y)− g−(y).

This implies that
∂tf = ∂tf− and ∂xg ≤ ∂xg−.
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Therefore, by Hypothesis 3.5 we get

∂tψ− +H(x,Dxψ−) ≤ ∂tψ +H(x,Dxψ) < 0.

On the other hand, without loss of generality, we can suppose that ψ(t0, x0) =
v∗(t0, x0).
Moreover for δ > 0, ψ̃ = ψ + δ is also a viscosity subsolution on a small enough
neighborhood (t0− r, t0 + r)×B(x0, r). We have ψ̃(t0, x0) > v∗(t0, x0). This implies
that there are points at every neighborhood of (t0, x0) such that ψ̃(t, x) > v(t, x).
Let

w(t, x) :=

max{v, ψ̃}(t, x), if (t, x) ∈ (t0 −
r

2 , t0 + r

2)×B(x0,
r

2),
v(t, x), otherwise.

By Lemma 3.16, w a subsolution of (3.15). Consequently, we have

v, w ∈ S.

However, w > v at some points, a contradiction. Therefore, v∗ is a viscosity super-
solution of (3.15).
Finally, observe that

lim inf∗u(t, x) ≤ lim inf∗v(x) ≤ lim sup∗v(t, x) ≤ lim sup∗u(t, x), ∀(t, x) ∈ ∂Ω,

implies that v(t, x) = `(x) on ∂Ω. In the end, by Theorem 3.22, v is continuous,
bounded and is the unique viscosity solution to equation (3.15). �

Remark 3.4.1. A sufficient condition to guarantee the existence of a locally bounded
and bounded from above upper semicontinuous subsolution u and a locally bounded
and bounded from below lower semicontinuous supersolution u of (3.15), that verify
all the conditions of Theorem 3.23, is to suppose the following condition on the
Hamiltonian H.
Hypothesis 3.6. The Hamiltonian H is such that

X 3 x 7→ H(x, 0DC1(TxX)) is bounded.

Indeed if Hypothesis 3.6 holds, let

C := sup
x∈X
|H(x, 0DC1(TxX))|, and M := sup

x∈X
|`(x)|.

Then for (t, x) ∈ [0,+∞)×X, the following two functions

u(t, x) := M − Ct, and u(t, x) := −M + Ct

are respectively a locally bounded and bounded from above upper semicontinuous
subsolution and a locally bounded and bounded from below lower semicontinuous
supersolution of (3.15) on (0,+∞)×X and

M = lim inf∗u(t, x) ≥ `(x) ≥ lim sup∗u(t, x) = −M, ∀(t, x) ∈ {0} ×X.
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3.4.3 Examples
Example 3.24 (Time dependent Eikonal equation in proper geodesically extendible
CAT(0) spaces). Let (X, d) be a proper, geodesically extendible CAT(0) space. All
spaces given in Examples, 3.4, 3.5 and 3.6 verify this condition. Consider the Hamil-
tonian

H(x,Dxu) := sup
v∈TxX
|v|x=1

{−Dxu � v}, x ∈ X.

We consider the Hamilton Jacobi equation (3.15) with the Hamiltonian H defined
above: 

∂tu+ sup
v∈TxX
|v|x=1

{−Dxu � v} = 0, (t, x) ∈ (0,+∞)×X,

u(0, x) = `(x), if x ∈ X.

This equation is the time dependent Eikonal equation. We consider the test functions
given in Definition 3.9 for the viscosity notion. From Example 3.20, we know that the
Hamiltonian H verifies Hypotheses 3.1 and 3.3. Hence we can apply Theorem 3.22
for any bounded from above upper semicontinuous subsolution and any bounded
from below lower semicontinuous supersolution. Furthermore, from Example 3.20,
we know that the Hamiltonian verifies Hypotheses 3.4 and 3.5. Finally, we have

∀x ∈ X, H(x, 0DC1(TxX)) = 0.

Consequently, Hypothesis 3.6 is also verified by the Hamiltonian. In conclusion,
Theorem 3.23 applies and there exists a unique bounded and continuous viscosity
solution to equation (3.15) with the Hamiltonian H defined above.

Remark 3.4.2. Let us take the proper, geodesically extendible CAT(0) space given
in Example 3.4:

•
X1

X2

A
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where X1 and X2 are the following two proper CAT(0) spaces:X1 := {(x1, x2, x3) ∈ R3 : x3 = 0},
X2 := {(x1, x2, x3) ∈ R3 : x1 = x2 = 0},

and A := {0}. The glued space
X := X1

⊔
A

X2,

along A is a proper, geodesically extendible CAT(0) space when endowed with the
following distance:

∀x, y ∈ X, d(x, y) :=

|x− y|, if ∃ i ∈ {1, 2} : x, y ∈ Xi,

|x|+|y|, otherwise,

where |.| is the Euclidean norm on R3. The tangent cone at a point x ∈ X is:

TxX =


X1 if x ∈ X1 \ A,
X2 if x ∈ X2 \ A,
X if x ∈ A.

Let ` : X → R be a continuous bounded function. The equation studied in Example
3.24 has the following expression:

∂tu+ sup
v∈X1
|v|=1

{−Dxu � v} = 0, if (t, x) ∈ (0,+∞)×X1 \ A,

∂tu+ sup
v∈X2
|v|=1

{−Dxu � v} = 0, if (t, x) ∈ (0,+∞)×X2 \ A,

∂tu+ sup
v∈X
|v|=1

{−Dxu � v} = 0, if (t, x) ∈ (0,+∞)× A,

u(0, x) = `(x).
From Example 3.24, the above equation admits a unique continuous and bounded
viscosity solution.
Remark 3.4.3. Let us take the proper, geodesically extendible CAT(0) space given
in Example 3.5:

•
X1

X2

A
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where X1 and X2 are the following two proper CAT(0) spaces:X1 := {(x1, x2, x3) ∈ R3 : x3 = 0},
X2 := {(x1, x2, x3) ∈ R3 : x1 = x2 = 0, x3 ≥ 0},

and A := {0}. The glued space

X := X1
⊔
A

X2,

along A is a proper, geodesically extendible CAT(0) space when endowed with the
following distance:

∀x, y ∈ X, d(x, y) :=

|x− y|, if ∃ i ∈ {1, 2} : x, y ∈ Xi,

|x|+|y|, otherwise.

The tangent cone at a point x ∈ X is:

TxX =


X1 if x ∈ X1 \ A,
Re3 if x ∈ X2 \ A,
X if x ∈ A.

Let ` : X → R be a continuous bounded function. The equation studied in Example
3.24 has the following expression:

∂tu+ sup
v∈X1
|v|=1

{−Dxu � v} = 0, if (t, x) ∈ (0,+∞)×X1 \ A,

∂tu+ sup
v∈Re3
|v|=1

{−Dxu � v} = 0, if (t, x) ∈ (0,+∞)×X2 \ A,

∂tu+ sup
v∈X
|v|=1

{−Dxu � v} = 0, if (t, x) ∈ (0,+∞)× A,

u(0, x) = `(x), if x ∈ X.

From Example 3.24, the above equation admits a unique continuous and bounded
viscosity solution.

Remark 3.4.4. Let e1, e2 and e3 be three unit vectors of R2. Let us take the proper,
geodesically extendible CAT(0) obtained by gluing together three half-lines, denoted
by X1, X2 and X3 along the origin point A = {0}:


X1 := [0,+∞)e1,

X2 := [0,+∞)e2,

X3 := [0,+∞)e3.
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A

X1X2

X3

The glued space
X :=

⊔
A

Xi,

along A is a proper, geodesically extendible CAT(0) space when endowed with the
following distance:

∀x, y ∈ X, d(x, y) :=

|x− y|, if ∃ i ∈ {1, 2, 3} : x, y ∈ Xi,

|x|+|y|, otherwise.

The tangent cone at a point x ∈ X is:

TxX =

Rei if x ∈ Xi \ A, and = 1, 2, 3,
X if x ∈ A.

Let ` : X → R be a continuous bounded function. The equation studied in Example
3.24 has the following expression:

∂tu+ sup
v∈Rei
|v|=1

{−Dxu � v} = 0, if (t, x) ∈ (0,+∞)×Xi \ A,

∂tu+ sup
v∈X
|v|=1

{−Dxu � v} = 0, if (t, x) ∈ (0,+∞)× A,

u(0, x) = `(x), if x ∈ X.

From Example 3.24, the above equation admits a unique continuous and bounded
viscosity solution.



Chapter 4

Deterministic optimal control
problem in Riemannian manifolds
under probability knowledge of
the initial condition

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.2 Setting of the problem . . . . . . . . . . . . . . . . . . . . . . . . 129
4.3 Wasserstein space over compact Riemannian Manifolds . . . . . 135

4.3.1 Geometric and topological properties of Wasserstein space135
4.3.2 The space of gradient vector fields and the tangent cone

in P2(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.3.3 Semiconvex/Semiconcave/DC functions . . . . . . . . . . 140

4.4 Time dependent Hamilton Jacobi Bellman equation in P2(M) . 144
4.5 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.5.1 Disintegration theorem . . . . . . . . . . . . . . . . . . . 155
4.5.2 Riemannian manifolds . . . . . . . . . . . . . . . . . . . 155

4.1 Introduction
The study of optimal control problems and viscosity theory in Wasserstein spaces has
gained more and more momentum in the last decade, due to its potential real-world
applications in modeling multi-agent systems. The potential real-world applications
include crowd dynamics modeling [89], opinion formation process modeling [90], herd
analysis [91], autonomous multi-vehicle navigation [92] and modeling uncertainties
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on the initial state of a deterministic controlled system [36, 37]. These problems look
into the evolution of a large number of agents, considered to be indistinguishable
from one another, subject to local and nonlocal interactions that depend on the
density of the distribution of all agents.

A suitable way to model these problems is through a macroscopic approach, where
we consider the collection of all agents that belong to a state space denoted X
(typically the Euclidean space or a Riemannian manifold), to be a density that
evolves through time. If we assume further that the total number of all agents
remains constant at all time, then we can normalize the density and assume that
the total mass of the system is equal to 1 at all time. Therefore, the evolution of
the system, seen as a probability density in the space of Borel probability measures
over X and denoted P(X), is described by a curve t 7→ µt ∈ P(X), where µt is the
probability density of the system at time t ≥ 0. The conservation of the mass of the
system at all time t ≥ 0 is described by the continuity equation

∂tµt + div(wt(.)µt) = 0, (4.1)

where wt(.) is a time dependent vector field and the equation is understood in the
sense of distributions.

In this chapter, we propose to study a deterministic controlled system on a compact
Riemannian manifold M with imperfect information on the initial state of the sys-
tem, i.e. the controller only knows the initial condition through a Borel probability
measure µ0 ∈ P(M), along which the initial state is distributed. This could be
regarded as a multi-agent system where the nonlocal interations between the agents
are not considered. More precisely, let T > 0 and consider the following controlled
system Ẏ (t) = f(Y (t), u(t)), t ∈ [t0, T ],

Y (t0) = x0, u(t) ∈ U,
(4.2)

where f : M × U → TM is the dynamics, assumed to be Lipschitz with respect to
the first variable and continuous with respect to the second variable, x0 ∈ M and
t0 ∈ [0, T ]. The set U is the set of admissible control values which is assumed to be
a compact subset of some metric space. The control function u(.) ∈ U is a Borel
measurable function u : [t0, T ]→ U . To emphasize the dependence of trajectories of
the controlled system (4.2) on the control function u(.), the initial time t0 and the
initial position x0, we denote them by

t 7→ Y t0,x0,u
t .

The main feature of this problem is that the initial state x0 is not perfectly known,
but rather distributed along the probability measure µ0. The evolution curves of
the initial uncertainty, denoted t 7→ µt0,µ0,u

t , are obtained by the pushforward of µ0
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with the flow at time t of the controlled equation (4.2). Therefore, the curves are of
the formµ

t0,µ0,u
t = Y t0,.,u

t ]µ0, t ∈ [t0, T ], and x 7→ Y t0,x,u
t is the flow of (4.2),

µt0,µ0,u
t0 = µ0.

Furthermore, notice that since f(., u(t)) is Lipschitz continuous and bounded, then
it is a known fact that the evolution trajectory t 7→ µt0,µ0,u

t , of the uncertainty µ0,
is the unique solution to the continuity equation∂tµ

t0,µ0,u
t + div(f(., u(t))µt0,µ0,u

t ) = 0, t ∈ [t0, T ],
µt0,µ0,u
t0 = µ0,

in the distributional sense [60, 93]. The controller aims at minimizing the following
final cost:

L(µ) =
ˆ
`(y)dµ(y),

where ` : M → R is a Lipschitz function. An immediate consequence of this
assumption is that the function L : P(M)→ R inherits the Lipschitz property from
` as well. The quantity L(µt0,µ0,u

T ) represents the expectation of the deterministic
final cost with respect to the measure µt0,µ0,u

T . To this optimal control problem, we
associate the following value function

ϑ(t0, µ0) = inf
u(.)∈U

L(µt0,µ0,u
T ).

In the literature, a similar problem was studied by various authors in the space of
Borel probability measures over the Euclidean space RN . In particular, it was ad-
dressed in [37] a differential game problem with uncertainties on the initial condition
and in [36] a Mayer optimal control problem with uncertainties on the initial condi-
tion. We stress on the difference between the set of trajectories t 7→ µt considered
here and the set of trajectories considered in [36]. Indeed, in the latter case, the set
of the evolution curves t 7→ µt of the initial uncertainty appears to be larger. The
trajectories t 7→ µt are solutions to the following continuity equation∂tµt + div(wtµt) = 0, t ∈ [t0, T ],

µt0 = µ0,

where wt(.) is a vector field such that

wt(.) ∈ {f(., u) : u ∈ U},

which gives rise to trajectories t 7→ µt that may not be obtained by the pushforward
of the initial uncertainty µ0 by the flow at time t of the controlled equation (4.2).
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In this manuscript, we want to study the evolution of the lack of information on
the initial condition in (4.2), modeled by a Borel probability measure µ0. Hence, we
only consider trajectories t 7→ µt that are obtained by the pushforward of the initial
uncertainty µ0 with the flow at time t of the controlled equation (4.2). Finally,
we mention that more general controlled systems on the space of Borel probability
measures over the Euclidean space are studied in [38, 94, 95, 96], where the nonlocal
interactions between the agents are taken into account.

The first main goal of this chapter is to study the properties and the regularity of the
value function. In particular, we show that the value function is Lipschitz continuous
with respect to both its variables and that it verifies the dynamic programming
principle. The second main goal of this chapter is to characterize the value function
as a unique viscosity solution to a Hamilton Jacobi Bellman equation (HJB in short)
defined on the Wasserstein space P(M). Ideally, the HJB equation should have the
following form: ∂tv +H(µ,Dµv) = 0, (t, µ) ∈ [0, T )× P(M),

v(T, µ) = L(µ).
(4.3)

The Hamiltonian H and the derivative with respect to the measure variable Dµv are
to be defined in a suitable way. Furthermore, we want to define a viscosity notion
for time dependent Hamilton Jacobi equations in P(M) so that the we can prove a
comparison principle that holds for any bounded upper semicontinuous subsolution
and any bounded lower semicontinuous supersolution. To give a precise definition
of all these notions in P(M), we will rely on the pseudo-Riemannian structure of
P(M), presented in Section 4.3.

Concerning viscosity theory in Wasserstein spaces, several notions have been in-
troduced in the literature to study first order Hamilton Jacobi equations in the
Wasserstein space over the Euclidean space P2(RN). One approach relies on intro-
ducing a generalization of sub/super differentials to the space P2(RN) [36, 38, 37].
Another approach is to define the notion of viscosity, in an extrinsic way, by “lift-
ing” the Hamilton Jacobi equation to a Hilbert space, then one uses the viscosity
theory developed in Banach spaces, developed in [28, 29]. All these approaches only
give a comparison princple that holds only for any uniformly continuous subsolu-
tion and any uniformly continuous supersolution. In this chapter, we use a different
approach. We aim at transposing the viscosity theory techniques that are used in
the classical theory ([3]) to the space of Borel probability measures P(M). In par-
ticular, we define a suitable notion of viscosity using a class of real-valued functions
that admit directional derivatives at all points µ ∈ P(M). We then prove a com-
parison principle that holds for any bounded upper semicontinuous subsolution and
any bounded lower semicontinuous supersolution. Finally, we prove that the value
function is the unique viscosity solution to the above HJB equation by using the
dynamic programming principle verified by the value function.
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The chapter is structured as follows. In Section 4.2, we formulate the Mayer problem
in the space of probability measures and we give the main properties of the value
functions. In Section 4.3, we recall some results of optimal transport theory and
the geometry of P(M). In particular, we give a characterization of the geodesics
in P(M), we describe the pseudo-Riemannian structure of P(M) and we give a
definition of real-valued directionally differentiable functions in P(M). Section 4.4
is devoted to the study of a suitable HJB equation that characterizes the value
function. In particular, we define the Hamiltonian we are going to work with, then
we define a notion of viscosity using the class of functions that are directionally
differentiable, we prove a comparison principle that holds for any bounded upper
semicontinuous subsolution and any bounded lower semicontinuous supersolution
and we prove that the value function is the viscosity solution of the HJB equation
via the dynamic programming principle.

4.2 Setting of the problem
Throughout this manuscript, (M, 〈., .〉) is a finite dimensional, compact and con-
nected Riemannian manifold without boundary. We denote by | . | the associated
norm on the tangent bundle TM , and by d(., .) its Riemannian distance on M . The
metric space (M,d), is a complete and compact space and its topology is equivalent
to the topology of the differentiable manifold M . The tangent bundle TM is itself
a complete Riemannian manifold when endowed with the Sasaki metric [97]. We
denote by dTM(., .) its Riemannian distance on TM associated to the Sasaki metric
(see Appendix 4.5.2).
We denote by P(M) the set of Borel probability measures over M and P2(M) the
set of Borel probability measures with bounded second moment

P2(M) := {µ ∈ P(M) :
ˆ
d2(x, x0)dµ(x) <∞, ∀x0 ∈M }.

Actually, since M is compact, we have P2(M) = P(M) but we will keep using the
notation P2(M). Recall that for any two topological spaces X and Z, any Borel
probability measure µ on X and any Borel function g : X → Z, the pushforward
measure g]µ on Z is defined by

g]µ(A) = µ(g−1(A)) ∀A ⊂ Z, a Borel set,

or equivalently,ˆ
h dg]µ =

ˆ
h ◦ g dµ, ∀h : Z → R, Borel measurable and bounded.

We define the Wasserstein distance dW (., .) over P2(M) by

dW (µ, ν) :=
√

inf
{ ˆ

d2(x, y)dγ(x, y)
}
,
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where the infimum is taken over all Borel probability measures of M ×M that have
marginals µ and ν, i.e.

γ ∈ P(M×M) : γ(A×M) = µ(A) and γ(M×B) = ν(B) ∀A,B, Borel sets of M.

Such Borel probability measures γ are called admissible plans of µ and ν and the
set of such plans is denoted Adm(µ, ν). It is well known that dW verifies all the
axioms of a distance and that the infimum is always reached [98, Theorem 1.5]. The
admissible plans where the minimum is achieved are called optimal transport plans
and the set of such plans is denoted Opt(µ, ν) ⊂ Adm(µ, ν).

Let T > 0 and U be a compact subset of a metric space. Consider the controlled
system, defined for T > t0 ≥ 0 and x0 ∈M , asẎ (t) = f(Y (t), u(t)), for almost every t ∈ [t0, T ],

Y (t0) = x0, u(t) ∈ U,
(4.4)

where f : M × U → TM satisfies the following assumptions:

(H)

f : M × U → TM is continuous and Lipschitz with respect to the state, i.e.
∃ k > 0 : dTM(f(x, u), f(y, u)) ≤ k d(x, y), ∀ u ∈ U, (x, y) ∈M ×M.

(Hco) For all x ∈M , the set of functions {x 7→ f(x, u) : u ∈ U} is convex.
.

Remark 4.2.1. Since M and U are compact, then the vector field f is bounded.
Furthermore, the Lipschitz assumption on f(., u) in Hypothesis (H) is equivalent
to the following: there exists k′ > 0 such that for all u ∈ U , x, y ∈ M and every
smooth curve α : [0, 1]→M joining x and y, we have

|ταx,y(f(x, u))− f(y, u)|≤ k′ length(α),

with ταx,y is the parallel transport of f(x, u) along the curve α and length(α) is the
Riemannian length of the curve α (see [99, Lemma II.A.2.4]). We set

Lip(f) := max(k, k′).

Remark 4.2.2. Hypotheses (H) and (Hco) are verified in particular by control-
affine systems of the following form. Let m ≥ 1 and let U be a compact convex
subset of Rm. Let (f0, ..., fm) be an (m + 1)-tuple of Lipschitz vector fields on M .
Then the dynamics

f(x, u) = f0(x) +
m∑
i=1

uifi(x), ∀(x, u) ∈M × U,

verifies (H) and (Hco).
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We define the set of open-loop controls by

U := {u : [0, T ]→ U : u(.) is measurable}.

Under the assumption (H), classical results of ordinary differential equations hold.
In particular, for any control u(.) ∈ U and x0 ∈ M , there exists a unique Lipschitz
trajectory t 7→ Y t0,x0,u

t defined on all [t0, T ] that is a solution to the controlled sytem
(4.4). Moreover, we have the following estimates.

Proposition 4.0.1. There exist C1, C2 > 0 positive constants such that for all
x0, z0 ∈M , for all t0 ∈ [0, T ], and t 7→ Y t0,x0,u

t , t 7→ Y t0,z0,u
t be solutions of (4.4), it

holds:
∀t ∈ [t0, T ], d(Y t0,x0,u

t , Y t0,z0,u
t ) ≤ C1 d(x0, z0),

d(Y t0,x0,u
t , x0) ≤ C2 |t− t0|, t ∈ [t0, T ].

Proof. (Sketch). Since M is compact, then all the statements are local in nature.
The global result is obtained by compactness of M and of [t0, T ]. First, by using
Nash embedding theorem, M can be embedded isometrically into a Euclidean space
(RN , ||.||), with N > 0 big enough. Let x0 ∈ M and V be a small enough open
neighborhood of x0. Then for z0 ∈ V we can apply the usual theory in RN and get

||Y t0,x0,u
t − Y t0,z0,u

t || ≤ eLip(f)T ||x0 − z0||.

Then by using the fact that the Euclidean distance is equivalent to the Riemannian
distance in V , we get the result. The second assertion can be established with similar
arguments, by taking t small enough so that Y t0,x0,u

t ∈ V . �

The control problem aims at minimizing the final costˆ
`(Y t0,x0,u

T ) dµ0(x0),

over all trajectories that are solutions of the dynamics (4.4) with the initial condition
at time t0 is x0 ∈ M , distributed along the measure µ0 ∈ P2(M). We consider the
following assumption:

(H`) ` : M → R is Lipschitz continuous with constant Lip(`).

When µ0 is equal to the Dirac mass δx0 , the resulting system corresponds to the
classical case without uncertainties on the initial condition. This problem is thor-
oughly studied in the literature (see for example [9, 76]). When µ0 is any probability
measure of P2(M), it is better to see this problem as an optimal control problem
defined in the space of Borel probability measures P2(M). First we rewrite the final
cost the following wayˆ

`(Y t0,x0,u
T ) dµ0(x0) =

ˆ
`(y) dY t0,.,u

T ]µ0 (y),
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and we minimize this cost over the set of trajectories t 7→ µt0,µ0,u
t of the space P2(M)

that verifyµ
t0,µ0,u
t = Y t0,.,u

t ]µ0, t ∈ [t0, T ], and x 7→ Y t0,x,u
t is the flow of (4.4),

µt0,µ0,u
t0 = µ0.

Hence if we set
∀µ ∈ P2(M), L(µ) =

ˆ
`(y)dµ(y),

then the final cost becomesˆ
`(y) dY t0,.,u

T ]µ0 (y) = L(µt0,µ0,u
T ).

For any u(.) ∈ U , the map x 7→ f(x, u(t)) is Lipschitz continuous and bounded
independently of t. Hence, the curve t 7→ µt0,µ0,u

t is the unique continuous solution
of the continuity equation (see [60, 93])∂tµ

t0,µ0,u
t + div(f(., u(t))µt0,µ0,u

t ) = 0, t ∈ [t0, T ],
µt0,µ0,u
t0 = µ0,

in the sense of distributions, i.e.
ˆ T

t0

ˆ
M

(∂tφ(t, x) + 〈∇xφ(t, x), f(x, u(t))〉)dµt0,µ0,u
t (x)dt = 0, ∀φ ∈ C∞c ([t0, T ]×M),

µt0,µ0,u
t0 = µ0,

where C∞c ([t0, T ]×M) is the class of smooth functions of [t0, T ]×M with compact
support. Therefore, the above optimal control problem can be rewritten as

inf
u(.)∈U

L(µt0,µ0,u
T ),

such that

∂tµ
t0,µ0,u
t + div(f(., u(t))µt0,µ0,u

t ) = 0, t ∈ [t0, T ],
µt0,µ0,u
t0 = µ0,

(4.5)

and the infimum is reached, since the set of trajectories of (4.4) is compact in the
topology of uniform convergence under Hypotheses (H) and (Hco) [76, Theorem
1, pp 60]. The associated value function to the above optimal control problem is
defined as

ϑ(t0, µ0) := inf
u(.)∈U

L(µt0,µ0,u
T ) = inf

u(.)∈U

ˆ
`(y) dµt0,µ0,u

T (y).

Under Hypotheses (H), (H`) and (Hco), we can already prove two properties of
the value function.
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Theorem 4.1 (Dynamic programming principle). Let µ ∈ P2(M), t ∈ [0, T ] and
h ∈ [t, T − t]. Assume (H), (H`) and (Hco). Then it holds

ϑ(t, µ) = inf
u(.)∈U

ϑ(t+ h, µt,µ,ut+h ).

Proof. Let u0(.) ∈ U be such that

ϑ(t, µ) =
ˆ
`(Y t,x,u0

T )dµ(x) =
ˆ
` dµt,µ,u0

T .

We have

ϑ(t, µ) =
ˆ
`(Y t,x,u0

T )dµ(x) =
ˆ
`(Y t+h,Y t,x,u0

t+h ,u0
T )dµ(x)

=
ˆ
`(Y t+h,x,u0

T )d(Y t,.,u0
t+h ]µ)(x)

=
ˆ
`(Y t+h,x,u0

T )dµt,µ,u0
t+h (x)

≥ inf
u(.)∈U

ˆ
`(Y t+h,x,u

T )dµt,µ,u0
t+h (x)

= inf
u(.)∈U

ˆ
` dµ

t+h,µt,µ,u0
t+h ,u

T

= ϑ(t+ h, µt,µ,u0
t+h ) ≥ inf

v(.)∈U
ϑ(t+ h, µt,µ,vt+h ).

It remains to prove the other inequality. Let u : [t, T ]→ U and uopt : [t+ h, T ]→ U
be such that ˆ

` dµ
t+h,µt,µ,u

t+h ,uopt
T = ϑ(t+ h, µt,µ,ut+h )

Let u∗ : [0, T ]→ U be the control function defined by

u∗(s) =

u(s), if s ∈ [t, t+ h],
uopt(s), if s ∈ [t+ h, T ].

Thus we get

ϑ(t, µ) ≤
ˆ
` dµt,µ,u

∗

T =
ˆ
` dµ

t+h,µt,µ,u
t+h ,uopt

T

= ϑ(t+ h, µt,µ,ut+h ).

By taking the infimum over u(.) ∈ U we get the result. �

Proposition 4.1.1. Assume (H), (H`) and (Hco). Then, the value function ϑ is
Lipschitz continuous on [0, T ]× P2(M). In particular, ϑ is bounded.
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Proof. Let t ∈ [0, T ], µ, σ ∈ P2(M). There exists a trajectory s 7→ Y t,x,u
s such that

ˆ
`(Y t,x,u

T )dσ(x) = ϑ(t, σ).

Hence, we have

ϑ(t, µ)− ϑ(t, σ) ≤
ˆ
`(Y t,x,u

T )dµ(x)−
ˆ
`(Y t,x,u

T )dσ(x).

Let γ ∈ Opt(µ, σ). Then we get
ˆ
`(Y t,x,u

T )dµ(x)−
ˆ
`(Y t,x,u

T )dσ(x) =
ˆ (

`(Y t,x,u
T )− `(Y t,y,u

T )
)
dγ(x, y)

≤ Lip(`)C1

ˆ
d(x, y)dγ(x, y)

≤ Lip(`)C1

√ˆ
d2(x, y)dγ(x, y)

= Lip(`)C1dW (µ, σ),

where C1 > 0 is defined in Proposition 4.0.1. Thus we get

ϑ(t, µ)− ϑ(t, σ) ≤ Lip(`)C1dW (µ, σ).

We can exchange the roles of σ and µ to get the exact same inequality. Therefore,
we get the Lipschitz continuity with respect to the state variable. To prove Lips-
chitz continuity with respect to time, let t, s ∈ [0, T ]. We assume, without loss of
generality, that 0 ≤ t < s ≤ T . By Theorem 4.1, there exists a trajectory r 7→ Y t,x,u

r

such that
ϑ(t, σ) = ϑ(s, Y t,.,u

s ]σ).
We have

|ϑ(s, σ)− ϑ(t, σ)| =|ϑ(s, σ)− ϑ(s, Y t,.,u
s ]σ)|

≤ Lip(`)C1dW (σ, Y t,.,u
s ]σ)

≤ Lip(`)C1

√ˆ
d2(x, Y t,x,u

s )dσ(x)

≤ Lip(`)C1C2|t− s|,

where C1, C2 > 0 are defined in Proposition 4.0.1. Thus ϑ is Lipschitz continuous
with respect to the time variable, and the proof is completed. �

In the classical theory of viscosity, the value function is the unique viscosity solution
of the Hamilton Jacobi Bellman equation [4]. The goal of the next two sections
is to show that the value function, in this setting, is also a viscosity solution to a
Hamilton Jacobi Bellman equation of the form
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∂tv +H(µ,Dµv) = 0, (t, µ) ∈ [0, T )× P2(M),
v(T, µ) = L(µ).

In order to define the Hamiltonian and the notation Dµv rigorously, we will analyse
the geometric structure of Wasserstein spaces in the next section.

4.3 Wasserstein space over compact Riemannian
Manifolds

The first subsection aims to give some geometric and topological properties of the
Wasserstein space and to give a characterization of the geodesics in the Wasser-
stein space. In the second subsection we describe the pseudo-Riemannian structure
that the Wasserstein space enjoys. In particular, we shed some light on where this
structure behaves “nicely” and where it degenerates. Finally, in the last subsection
we give the definition of directionally differentiable functions in the Wasserstein
space. All these tools are going to be necessary to give a precise definition of the
Hamiltonian and viscosity notion for Hamilton Jacobi equations in P2(M).

4.3.1 Geometric and topological properties of Wasserstein
space

The Wasserstein space (P2(M), dW ) inherits many geometric and topological prop-
erties from the base space (M,d). Indeed, since (M,d) is a Polish space (because
it is a complete and separable metric space), then (P2(M), dW ) is a Polish space.
Also, since M is compact, then (P2(M), dW ) is also compact ([35, Chapter 6]).
Next, we recall the definition of geodesic spaces. Let (X, dX) be a metric space. A
curve α : [0, 1]→ X is called a constant speed geodesic if

dX(αt, αs) =|t− s|dX(α0, α1), ∀t, s ∈ [0, 1].

The metric space (X, dX) is said to be a geodesic space if any two points of X
are connected by at least one constant speed geodesic. In what follows, we intend
by ‘geodesic’, a constant speed geodesic. Note that the metric spaces (M,d) and
(TM, dTM) are geodesic spaces. Furthermore, the Wasserstein space (P2(M), dW )
inherits this property from (M,d) and is also a geodesic space (see [60] or [35]).

We denote by P(TM) the set of Borel probability measures over TM . We define
the Wasserstein space over (TM, dTM) by

P2(TM) = { η ∈ P(TM) :
ˆ
d2
TM

(
(x, v), (x0, v0)

)
dη(x, v) <∞, ∀ (x0, v0) ∈ TM }

(4.6)
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endowed with its corresponding Wasserstein distance. It is sufficient that the con-
dition ˆ

d2
TM

(
(x, v), (x0, v0)

)
dη(x, v) <∞

in (4.6) is verified for only one point (x0, v0) ∈ TM . Thus if we take (x0, 0x0) ∈ TM ,
then from the definition of dTM (see Appendix 4.5.2), this condition is equivalent to

ˆ
|v|2dη(x, v) <∞.

For µ ∈ P2(M), we denote by P2(TM)µ ⊂ P2(TM), the set of measures γ such that
πM]γ = µ, where πM : TM → M is the canonical projection onto M . This set is
equivalent to the set of measures γ ∈ P(TM) such that

πM]γ = µ, and
ˆ
|v|2dγ(x, v) <∞.

Let exp : TM →M be the exponential map of (M, 〈., .〉). The exponential expµ(γ)
of a measure γ ∈ P2(TM)µ is defined by

expµ(γ) := exp ]γ ∈ P2(M).

We define the map exp−1
µ : P2(M)→ P2(TM)µ by

exp−1
µ (ν) := { γ ∈ P2(TM)µ : expµ(γ) = ν and

ˆ
|v|2dγ(x, v) = (dW (µ, ν))2 },

or in other words, the set of measures γ ∈ P2(TM) such that (πM , exp)]γ is an
optimal plan from µ to ν andˆ

|v|2dγ(x, v) = (dW (µ, ν))2.

We introduce the following notation

∆t(x, v) = (x, tv), ∀t ∈ R, (x, v) ∈ TM and t�γ = ∆t]γ, ∀t ∈ R, γ ∈ P2(TM).

Lemma 4.2. ([68, Theorem 1.11]) Let µ, ν ∈ P2(M). A curve (µt)t∈[0,1] ⊂ P2(M)
is a geodesic connecting µ to ν if and only if there exists a measure γ ∈ exp−1

µ (ν)
such that

µt := (exp ◦∆t)]γ = expµ(t � γ), ∀ t ∈ [0, 1]. (4.7)
The measure γ uniquely defines the geodesic (µt)t∈[0,1].

Remark 4.3.1. The map exp−1
µ is not really an inverse map to expµ since only

the measures γ ∈ P2(TM)µ such that (πM , exp)]γ are optimal plans between µ and
ν and ˆ

|v|2dγ(x, v) = (dW (µ, ν))2
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are considered. While this might seem confusing, the map exp−1
µ is defined this way

so that for all γ ∈ exp−1
µ (ν), the curve t 7→ expµ(t � γ) is a geodesic connecting µ

and ν.

From Lemma 4.2, we get the following result about geodesics emanating from any
µ ∈ P2(M).

Proposition 4.2.1. ([68, Proposition 1.12]) Let µ ∈ P2(M) and let (µt)t be a
geodesic emanating from µ and defined in some interval [0, ε], with ε > 0. Then
there exists a unique measure γ ∈ P2(TM)µ such that

µt = expµ(t � γ), t ∈ [0, ε].

To summarize, we have seen in this section that the Wasserstein space (P2(M), dW )
is a compact geodesic space and each geodesic starting from µ ∈ P2(M) can be
characterized by a measure γ ∈ P2(TM)µ as shown in Proposition 4.2.1. We stress
on the fact that not all the curves of the form

t 7→ expµ(t � γ), t ∈ [0, ε], γ ∈ P2(TM)µ

are geodesics but all the geodesics are of this form.

4.3.2 The space of gradient vector fields and the tangent
cone in P2(M)

The space (P2(M), dW ) has a pseudo-Riemannian structure. This has been first
pointed out by Otto in [65] and was justified rigorously by Ambrosio-Gigli-Savaré
in the case of Wasserstein spaces over the Euclidean space P2(RN) [60, Chapter 8].
We give hereafter the construction in P2(M) following [100]. Let L2(µ, TM) be the
space of squared integrable vector fields with respect to µ ∈ P2(M), i.e. vector fields
w : M → TM such that

||w||2L2(µ,TM) :=
ˆ
M

〈w(x), w(x)〉dµ(x) < +∞.

The space of gradient vector fields at µ is the following Hilbert space:

SpGrµ(P2(M)) := {∇φ : φ ∈ C∞c (M)}L
2(µ,TM)

.

Here C∞c (M) is the space of smooth functions of M with compact support. We
denote by

πµ : L2(µ, TM)→ SpGrµ(P2(M))
the orthogonal projection map onto the space of gradient vector fields. The space of
gradient vector fields is linked to the continuity equation in the following way. Let
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I ⊂ R be an open interval and (µt)t∈I be a Lipschitz curve in P2(M). Then, following
[100, Proposition 2.5], there exists a family of vector fields w : I × M → TM ,
(t, x) 7→ wt(x) ∈ TxM , such that

ˆ s

r

||wt||2L2(µt,TM) dt <∞, ∀r, s ∈ I : r < s,

and the continuity equation

d

dt
µt + div(wtµt) = 0, (4.8)

is satisfied in the distributional sense, i.e.
ˆ
I

ˆ
M

(∂tφ(t, x) + 〈∇xφ(t, x), wt(x)〉)dµt(x)dt = 0, ∀φ ∈ C∞c (I ×M).

The family of vector fields w is not unique in general. Indeed, notice that if the
family of vector fields w defined above verifies the continuity equation (4.8) in the
sense of distributions, then the family of vector fields (t, x) 7→ πµt ◦wt(x) also verifies
the continuity equation (4.8) in the sense of distributions. However, it can be shown
[100, Propositions 2.4 and 2.5] that (t, x) 7→ πµt ◦wt(x) is the unique family of vector
fields that verifies (4.8) with minimal L2(µt, TM) norm for almost all t ∈ I and

πµt ◦ wt(.) ∈ SpGrµt(P2(M)), for almost all t ∈ I.

One can think of πµt ◦ wt(.) as the velocity vector field at time t for the curve
(µt)t∈I . The construction of the space of gradient vector fields is analytical and it
has the advantage to retain the link between Lipschitz curves of P2(M) and the
continuity equation (4.8). We will use this point of view to justify the expression of
the Hamiltonian associated to the optimal control problem (4.5).

On the other hand, there is another point of view that also justifies rigorously the
pseudo-Riemannian structure of (P2(M), dW ) which consists in using tools of metric
geometry. In short, for sufficiently well-behaved metric spaces, one can define a
tangent cone at every point of the space. The tangent cone is the metric counterpart
of the tangent space for Riemannian manifolds. For (P2(M), dW ), it was shown in
[68, 58] that the notion of tangent cone is well-defined at every point. We give
hereafter the definition of the tangent cone in (P2(M), dW ) following [68]. First we
define the space of directions at a point. Let µ ∈ P2(M). The space of directions at
µ is the set of “initial velocities” of geodesics emanating from µ:

Dirµ :=
{
γ ∈ P2(TM)µ : t 7→ expµ(t�γ) is a geodesic defined in some interval [0, ε]

}
.

This definition is a direct consequence of Proposition 4.2.1. In this point of view,
The measures γ are seen as the “initial velocities” of their corresponding geodesics
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starting from µ in analogy with Riemannian geometry. Next, we are going to define
the tangent cone at µ. Following [68, Section 3], we define the following distance
Wµ on Dirµ. For all γ, η ∈ Dirµ, the limit

Wµ(γ, η) := lim
t↓0

dW

(
expµ(t � γ), expµ(t � η)

)
t

.

exists and defines a distance on Dirµ [68, Corollary 5.6].

Definition 4.1. (Tangent cone). Let µ ∈ P2(M). The tangent cone TµP2(M) is
the following set

TµP2(M) := Dirµ
Wµ

=
{
γ ∈ P2(TM)µ : t 7→ expµ(t � γ) is a geodesic defined in some [0, ε]

}Wµ

with the closure taken with respect to the distance Wµ. By closure we intend the
abstract completion of Dirµ with respect to Wµ. One can see clearly the structure
of a cone in TµP2(M) since we have

∀γ ∈ TµP2(M), ∀λ ∈ R+, λ � γ ∈ TµP2(M).

The above definition of Wµ is necessary for the tangent cone to be well-defined for
reasons we will not develop here. This construction is not specific to Wasserstein
spaces. It is valid for a large class of metric spaces [51]. In the case of Wasserstein
spaces, the interested reader can check [68, 58] for more details. The important idea
to retain here is that the tangent cone is always defined as the completion of the
space of directions with respect to this distance.
Next, we highlight the connexion between the tangent cone and the space of gradient
vector fields following [68, Section 6]. For any γ ∈ P2(TM)µ, we define its barycentric
projection the following way

Bµ : P2(TM)µ → L2(µ, TM) : Bµ(γ)(x) =
ˆ
vdγx(v),

where {γx}x∈M is the disintegration of γ with respect to the projection πM (see
appendix 4.5.1). The barycentric projection verifies the following equality:

∀g(.) ∈ L2(µ, TM), ∀x ∈M, Bµ(g]µ)(x) = g(x).
Furthermore, the barycentric projection is characterized by the following equality

ˆ
〈w(x), v〉dγ(x, v) =

ˆ
〈w(x),

ˆ
vdγx(v)〉 dπM]γ(x)

=
ˆ
〈w(x),Bµ(γ)(x)〉 dµ(x), ∀w ∈ L2(µ, TM).

(4.9)
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Following [68, Corollary 6.4 and Proposition 6.3], the barycentric projection and the
pushforward map link the tangent cone with the space of gradient vector fields in
the following way:

SpGrµ(P2(M)) = {g(.) ∈ L2(µ, TM) : g]µ ∈ TµP2(M)},
= {Bµ(γ)(x) : γ ∈ TµP2(M)}.

(4.10)

Consequently, the space of gradient vector fields can be seen as a subset of the
tangent cone since we trivially get from (4.10)

∀µ ∈ P2(M), w(.) ∈ SpGrµ(P2(M))⇐⇒ w]µ ∈ TµP2(M) and w(.) ∈ L2(µ, TM).

More generally, given g(.) ∈ L2(µ, TM), the measure πµ◦g]µ belongs to the tangent
cone, i.e.

πµ ◦ g]µ ∈ TµP2(M), since πµ ◦ g(.) ∈ SpGrµ(P2(M)).

A natural question that raises itself is when the tangent cone and the space of
gradient vector fields are equal (up to an isometry). This question was answered by
Gigli in [68]. It was shown that the two sets are equal at some µ ∈ P2(M) if and only
if µ is a “regular measure”, meaning that it gives zero measure to any hypersurface
of M which, locally, is the graph of the difference of two convex functions [68,
Corollary 6.6]. A regular measure µ is characterized by the following property: for
any σ ∈ P2(M), there exists a unique optimal transport plan between µ and σ and it
is induced by a map, i.e. there exists a Borel measurable map T : M →M such that
(Id, T )]µ is the optimal transport plan between µ and σ. This is a refinement of
Brenier-McCann’s result [101] in which the same property was proven to be true for
the case where µ is absolutely continuous with respect to the Riemannian volume
form. Intuitively, it means that when µ is a regular measure, the Riemannian
structure on P2(M) behaves nicely, since the tangent cone is equal to the space of
gradient vector fields, so it is a Hilbert space, in contrast with when µ is not a regular
measure where the structure of the tangent cone degenerates. This distinction is
important for us because we want to build a robust viscosity notion for first order
Hamilton Jacobi equations that will allow us to treat them in all P2(M). Therefore,
we will use the tangent cone to define directionally differentiable functions since the
tangent cone encodes all the information about initial velocities of geodesics starting
from µ. We will then use directionally differentiable functions to define the viscosity
notion.

4.3.3 Semiconvex/Semiconcave/DC functions
In P2(M), real-valued Lipschitz semiconvex or semiconcave functions admit direc-
tional derivatives at every point. These functions are going to serve us as test
functions in the definition of viscosity notion. Moreover, the squared Wasserstein
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distance function d2
W (., σ) (for some σ ∈ P2(M) fixed) is Lipschitz and semiconcave.

An explicit formula will be given for its directional derivatives at every point.

Let F : P2(M)→ R be a function and µ ∈ P2(M). We say that F has a directional
derivative at µ along a geodesic α : [0, ε] → P2(M) emanating from µ, with ε > 0,
if the limit

d

dt

∣∣∣∣
t=0
F (αt) = lim

t↓0

F (αt)− F (α0)
t

exists and is finite (notice that the continuity of F is not required in this definition).
A particular class of functions that admit directional derivatives are Lipschitz func-
tions that can be represented as a difference of semiconvex functions. We refer to
them as Lipschitz and DC functions. We define them hereafter.

Definition 4.2. Let F : P2(M)→ R be a function.

• We say that F is semiconcave if there exists λ ∈ R such that for every geodesic
α : [0, 1]→ P2(M) the following inequality holds

F (αt) ≥ (1− t)F (α0) + tF (α1)− λ

2 t(1− t)d
2
W (α0, α1).

• Similarly, we say that F is semiconvex if and only if −F is semiconcave.

• Finally, we say that F is a DC function if it can be represented as a difference
of two semiconvex functions.

In particular, every semiconvex function is a DC function and every semiconcave
function is also a DC function.
Let µ ∈ P2(M) and F : P2(M)→ R be a Lipschitz and semiconcave function. The
directional derivative of F at µ along a geodesic α emanating from µ

d

dt

∣∣∣∣
t=0
F (αt) = lim

t↓0

F (αt)− F (α0)
t

,

exists and is finite by [51, Proposition 6.14]. Furthermore, by Proposition 4.2.1,
every geodesic α emanating from µ is of the following form

αt = expµ(t � γ), for some γ ∈ Dirµ and t ∈ [0, ε].

So we define the differential function of F on Dirµ, denoted by DµF (µ) in the
following way:

∀γ ∈ Dirµ, DµF (µ)(γ) := lim
t↓0

F (expµ(t � γ))− F (µ)
t

.

Moreover, following [51, Proposition 6.14] the differential function

γ 7→ DµF (µ)(γ)
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is Lipschitz and positively homogeneous in (Dirµ,Wµ), with a Lipschitz constant
inferior or equal to the Lipschitz constant of F . Consequently, we can extend the dif-
ferential function DµF (µ)(.) to be defined on the whole tangent cone (TµP2(M),Wµ)
by density.
Similarly, if F : P2(M) → R is Lipschitz and semiconvex, then it is directionally
differentiable and its differential function is Lipschitz and positively homogeneous
and is defined by

DµF (µ)(.) = −Dµ(−F )(µ)(.).
Finally, if F : P2(M) → R is a Lipschitz and DC function then it is directionally
differentiable and its differential is Lipschitz and positively homogeneous.
For µ ∈ P2(M), we denote by Cµ(P2(M)) the class of Lipschitz and positively
homogeneous functions of TµP2(M) and we set

C(P2(M)) :=
⋃

µ∈P2(M)
{µ} × Cµ(P2(M)),

to be the metric analogue of the cotangent bundle in P2(M). Next, we give an explicit
expression of the directional derivatives of the squared Wasserstein distance. The
next result shows that the squared Wasserstein distance is a semiconcave function.

Proposition 4.2.2. ([68, Proposition 4.1]). Let σ ∈ P2(M) be fixed. Then the
squared Wasserstein distance

P2(M) 3 ν 7→ d2
W (ν, σ)

is a Lipschitz and semiconvave function.

In particular, the squared Wasserstein distance function is directionally differen-
tiable. In fact, a much more general result holds: if F (.) = d2(., σ), then the limit

lim
t↓0

F (expµ(t � γ))− F (µ)
t

exists for all curves of the form

t 7→ expµ(t � γ), for some γ ∈ P2(TM)µ and t ∈ [0, ε]. (4.11)

even though they are not geodesics. We will only give a weaker version of the
expression of the above limit, when

γ = g]µ, g(.) ∈ L2(µ, TM).

The general result can be found in [68, Theorem 4.2].

Proposition 4.2.3. (Derivative of the squared Wasserstein distance) Let µ, σ ∈
P2(M), and g(.) ∈ L2(µ, TM). Let γ = g]µ ∈ P2(TM)µ. Let F : P2(M) → R be
the function

∀ν ∈ P2(M), F (ν) = d2
W (ν, σ).
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Then it holds

lim
t↓0

F (expµ(t � γ))− F (µ)
t

= −2 sup
ζ∈exp−1

µ (σ)

ˆ
〈g(x), v〉dζ(x, v). (4.12)

We stress on the fact that equality (4.12) holds for all curves of the form (4.11)
even though they are not geodesics. Next, we show the following result concern-
ing the differential of the squared Wasserstein distance, which is a consequence of
Proposition 4.2.3 and the properties of the barycentric projection.

Theorem 4.3. Let µ, σ ∈ P2(M), and g(.) ∈ L2(µ, TM). Let γ = πµ ◦ g]µ ∈
TµP2(M). Let F : P2(M)→ R be the function

∀ν ∈ P2(M), F (ν) = d2
W (ν, σ).

Then it holds

DµF (µ)(γ) = lim
t↓0

F (expµ(t � γ))− F (µ)
t

= −2 sup
ζ∈exp−1

µ (σ)

ˆ
〈πµ ◦ g(x), v〉dζ(x, v)

= −2 sup
ζ∈exp−1

µ (σ)

ˆ
〈g(x), v〉dζ(x, v).

Proof. First, we show that

DµF (µ)(γ) = lim
t↓0

F (expµ(t � γ))− F (µ)
t

.

Since γ ∈ TµP2(M) and DµF (µ)(.) is Lipschitz, then there exists a sequence of
measures (γn)n ⊂ Dirµ such that Wµ(γn, γ)→ 0 and DµF (µ)(γn)→ DµF (µ)(γ) as
n tends to infinity. We have∣∣∣∣DµF (µ)(γ)− lim

t↓0

F (expµ(t � γ))− F (µ)
t

∣∣∣∣ =
∣∣∣∣ lim
n→∞

DµF (µ)(γn)− lim
t↓0

F (expµ(t � γ))− F (µ)
t

∣∣∣∣
=
∣∣∣∣ lim
n→∞

lim
t↓0

F (expµ(t � γn))− F (expµ(t � γ))
t

∣∣∣∣
≤ Lip(F ) lim

n→∞
lim
t↓0

dW

(
expµ(t � γn), expµ(t � γ)

)
t

= Lip(F ) lim
n→∞

Wµ(γn, γ) = 0,

where Lip(F ) is the Lipschitz constant of F . This implies the result. Furthermore,
Proposition 4.2.3 gives us

lim
t↓0

F (expµ(t � γ))− F (µ)
t

= −2 sup
ζ∈exp−1

µ (σ)

ˆ
〈πµ ◦ g(x), v〉dζ(x, v).
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It remains to prove the last equality. First, notice that from Lemma 4.2 we trivially
get

exp−1
µ (σ) ⊂ TµP2(M).

Furthermore, we know from equality (4.10) that if ζ ∈ TµP2(M), then Bµ(ζ) ∈
SpGrµ(P2(M)). Hence, from (4.9) and (4.10) we deduce that for any ζ ∈ exp−1

µ (σ)
we have ˆ

〈g(x), v〉dζ(x, v) =
ˆ
〈g(x),

ˆ
vdζx(v)〉dµ(x)

=
ˆ
〈g(x),Bµ(ζ)(x)〉dµ(x)

=
ˆ
〈πµ ◦ g(x),Bµ(ζ)(x)〉dµ(x)

=
ˆ
〈πµ ◦ g(x), v〉dζ(x, v),

which implies the last equality. �

4.4 Time dependent Hamilton Jacobi Bellman equa-
tion in P2(M)

We have defined all the elements we need to give a precise definition of the Hamil-
tonian and the viscosity notion. In this section, we prove that the value function is
the unique viscosity solution to a Hamilton Jacobi Bellman equation. First, we give
a justification for the Hamiltonian we are going to work with, based on Otto’s point
of view of the pseudo-Riemaniann structure of P2(M). We recall from Section 4.2
that the value function ϑ is equal to

∀(t0, µ0) ∈ [0, T ]×P2(M), ϑ(t0, µ0) =


inf
u∈U

L(µt0,µ0,u
T )

such that

∂tµ
t0,µ0,u
t + div(f(., u(t))µt0,µ0,u

t ) = 0,
µt0,µ0,u
t0 = µ0, t ∈ [t0, T ],

and the continuity equation∂tµ
t0,µ0,u
t + div(f(x, u(t))µt0,µ0,u

t ) = 0, t ∈ [t0, T ],
µt0,µ0,u
t0 = µ0,

is understood in the sense of distributions, i.e.
ˆ T

t0

ˆ
M

(∂tφ(t, x) + 〈∇xφ(t, x), f(x, u(t))〉)dµt0,µ0,u
t (x)dt = 0, ∀φ ∈ C∞c ([t0, T ]×M),

µt0,µ0,u
t0 = µ0
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Moreover, by the discussion made at the beginning of Section 4.3.2, every trajectory
t 7→ µt0,µ0,u

t is also a solution to the continuity equation∂tµ
µ0,u
t + div(πµt ◦ f(x, u(t))µt0,µ0,u

t ) = 0, t ∈ [t0, T ],
µt0,µ0,u
t0 = µ0,

in the distributional sense. Hence, the quantity

πµt ◦ f(., u(t))]µt0,µ0,u
t ∈ T

µ
t0,µ0,u
t

P2(M)

can be seen as the velocity at time t of the trajectories t 7→ µt0,µ0,u
t . This heuristic

argument motivates us to consider the following Hamiltonian H : C(P2(M)) → R
defined by

∀(µ, pµ) ∈ C(P2(M)), H(µ, pµ) = inf
u∈U

pµ

(
πµ ◦ f(., u)]µ

)
. (4.13)

The definition of the Hamiltonian here resembles the one we usually encounter when
Hamilton Jacobi equations are studied on a differentiable manifold. The only differ-
ence here is that since (P2(M), dW ) is a metric space, the Hamiltonian is defined on
the metric cotangent bundle. We consider the following Hamilton Jacobi equation

∂tv +H(µ,Dµv) = 0, (t, µ) ∈ [0, T )× P2(M),

v(T, µ) = L(µ) =
ˆ
`dµ.

(4.14)

We will take test functions that are twice continuously differentiable with respect
to the time variable and in the class of DC functions with respect to the measure
variable in order to define the notions of viscosity supersolution and viscosity sub-
solution.

Definition 4.3. (Test functions).
Let T EST 1 be the set defined as:

T EST 1 := {(t, µ) 7→ ψ(t)+a d2
W (µ, σ) : a ∈ R+, σ ∈ P2(M), ψ(.) ∈ C2([0, T ],R)}.

We set T EST 2 = −T EST 1, so we have

T EST 2 = {(t, µ) 7→ ψ(t)+a d2
W (µ, σ) : a ∈ R−, σ ∈ P2(M), ψ(.) ∈ C2([0, T ],R)}.

Definition 4.4. (Viscosity solutions).

• We say that a function v : [0, T )× P2(M)→ R satisfies the inequality

∂tv +H(µ,Dµv) ≥ 0,



Chapter 4. Deterministic optimal control problem in Riemannian
manifolds under probability knowledge of the initial condition 146

at (t, µ) ∈ [0, T ) × P2(M) in the viscosity sense if v is upper semicontinuous
and for all T EST 1 functions φ : [0, T ]× P2(M) → R such that v − φ attains
a maximum at (t, µ), we have

∂tφ+H(µ,Dµφ) ≥ 0.

A function v satisfying ∂tv+H(µ,Dµv) ≥ 0 on [0, T )×P2(M) in the viscosity
sense is called a viscosity subsolution of (4.14).

• Similarly, we say that a function v : [0, T )×P2(M)→ R satisfies the inequality

∂tv +H(µ,Dµv) ≤ 0,

at (t, µ) ∈ [0, T ) × P2(M) in the viscosity sense if v is lower semicontinuous
and for all T EST 2 functions φ : [0, T ]× P2(M) → R such that v − φ attains
a minimum at (t, µ), then

∂tφ+H(µ,Dµφ) ≤ 0.

A function v satisfying ∂tv+H(µ,Dµv) ≤ 0 on [0, T )×P2(M) in the viscosity
sense is called a viscosity supersolution of (4.14).

• We say that a continuous function v : [0, T ]×P2(M)→ R is a viscosity solution
of (4.14) if it is both a supersolution and a subsolution on [0, T )×P2(M) and
verifies

v(T, µ) = L(µ).

Discussion on the notion of viscosity

The notion of viscosity was introduced in [1] to prove well-posedness of Hamilton
Jacobi equations in the Euclidean space RN , where the test functions used were
continuously differentiable functions for both the supersolution and subsolution. In
this case, one can identify the differential of the test functions with its gradient
and the Hamiltonian is assumed to be a continuous mapping from RN × RN to
R. Shortly after, the notion was extended to any Banach space, denoted V , which
possesses the Radon-Nikodym property [28, 29]. The test functions used in this
setting were Fréchet differentiable functions for both the supersolution and subso-
lution. The Fréchet differential belongs to the dual space of V , denoted V ∗, and
the Hamiltonian is assumed to be a continuous mapping from V × V ∗ to R. The
notion of viscosity can also be extended to Riemannian manifolds using continuously
differentiable functions and the Hamiltonian is assumed to be a continuous mapping
from the cotangent bundle to R [102].
The common features between these definitions are that the state spaces considered
in all these examples possess a structure rich enough so that one can assume con-
tinuity of the Hamiltonian with respect to both its variables in the topology of the
product of the space and its dual space in the case of Banach spaces or the topology
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of the cotangent bundle in the case of differentiable manifolds. Furthermore, the
Fréchet differentiability/continuous differentiability can be defined in these spaces
and Fréchet differentiable/continuously differentiable functions exist “in abundance”
in order to use them as test functions. In particular, the squared distance function of
the state spaces considered is differentiable. This function is particularly important
in viscosity theory because it is used to apply the variable doubling technique to
obtain the comparison results that guarantee uniqueness of the viscosity solution.
Furthermore, one can derive existence of the solution from the comparison results
using Perron’s method (see for example [3, 4]).
In (P2(M), dW ) this approach seems to be less straightforward. On the one hand,
(P2(M), dW ) is a metric space that does not have any bundle structure that can be
exploited to assume continuity of the Hamiltonian on an interesting topology (in-
deed, the metric cotangent bundle defined in Section 4.3.3 can be endowed with the
disjoint union distance which is not very useful). On the other hand, the notion of
Fréchet differentiability/continuous differentiability is not well-defined in this space,
due to the fact that the structure of the tangent cone at µ ∈ P2(M) degenerates
whenever µ is not a regular measure.
The most known approach to circumvent these difficulties in Wasserstein spaces is
through the so-called Lions differentiability [63]. The idea is the following: given
a real-valued function of P2(M), one considers its “lift” to the space of squared
integrable random variables of a probability space equipped with an atomless prob-
ability measure (for example, a closed ball of M equipped with the normalized
volume form). The lifted function depends on the random variables only through
their law in P2(M). One then defines Lions differentiable functions in P2(M) as the
set of functions such that their lift is Fréchet differentiable in the space of squared
integrable random variables. This approach was studied in detail in [40] for the
space P2(RN). However, the functions that verify this notion of differentiability are
not “abundant” in Wasserstein spaces. For example, the squared Wasserstein dis-
tance is not differentiable according to this definition. In fact, it was shown in [103]
that the squared Wasserstein distance is differentiable according to this notion at
some µ ∈ P2(RN) if and only if µ is a regular measure. This result is not surprising
since the pseudo-Riemannian structure degenerates whenever µ is not regular. This
presents a major issue for studying Hamilton Jacobi equations in Wasserstein spaces
since we can no longer extend viscosity-type techniques (variable doubling, Perron’s
method) in this setting.
Two possible approaches can be considered to solve this problem. The first approach
would consist in restricting the treatment of Hamilton Jacobi equations to the set
of regular measures. The difficulty using this method is that the set of regular mea-
sures is not locally compact and not geodesically convex as it was shown in [104].
The second approach would be to relax the Lions differentiability condition and look
for test functions that would still be differentiable in a suitable sense and exist “in
abundance” in P2(M). The latter approach is the one adopted in this manuscript.
The notion of differentiability that is most suitable in P2(M) is directional differ-
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entiability, presented in Section 4.3.3. Indeed, all Lipschitz and DC functions are
directionally differentiable at every point. The class of DC functions includes the
squared distance function and most of the known functionals in P2(M) (the internal
energy functional, the potential energy functional, the interaction energy functional,
the entropy functional...) [35, Chapter 15]. The test functions chosen in Definition
4.3 constitute a subset of the class of DC functions. More precisely, we choose a
subset of semiconcave functions to test subsolutions and a subset of semiconvex
functions to test supersolutions. However, this approach comes with a major diffi-
culty which is that the Hamiltonian (4.13) is not continuous in this setting. This is
the most delicate part to deal with. Luckily for us, for Hamiltonians of type (4.13),
and the test functions chosen in Definition 4.3, we have enough information to guar-
antee well-posedness of the Hamilton Jacobi equation (4.14) without any further
assumptions on the regularity of the Hamiltonian.

Next, we prove a comparison principle that holds for any bounded upper semicon-
tinuous subsolution and any bounded lower semicontinuous supersolution. First, we
need two key results.

Proposition 4.3.1. For all σ, µ ∈ P2(M) and a > 0, we have:

H(µ, aDµ(d2
W (µ, σ)))−H(σ,−aDσ(d2

W (µ, σ))) ≤ 2aLip(f) d2
W (µ, σ).

Proof. For any (x, v) ∈ TM , let τx,expx(v) be the parallel transport from x to expx(v)
along the curve [0, 1] 3 t→ expx(tv) (see Appendix 4.5.2). First, since the parallel
transport τx,expx(v) preserves the Riemannian metric, we have

∀ (x, v) ∈ TM, 〈f(x, u), v〉 = 〈τx,expx(v)(f(x, u)), τx,expx(v)(v)〉 and |τx,expx(v)(v)| =|v|.

Furthermore, since f(., u) is Lipschitz, then by Remark 4.2.1 we have

∀x ∈M, ∀v ∈ TxM, |τx,expx(v)(f(x, u))− f(expx(v), u)|≤ Lip(f) |v|.

Thus we get for every (x, v) ∈ TM

〈τx,expx(v)(f(x, u)),−τx,expx(v)(v)〉 ≤ 〈f(expx(v), u),−τx,expx(v)(v)〉+ Lip(f)|v||τx,expx(v)(v)|
= 〈f(expx(v), u),−τx,expx(v)(v)〉+ Lip(f)|v|2

Let σ, µ ∈ P2(M), a > 0 and ζ ∈ exp−1
µ (σ). Then we have

−
ˆ
〈f(x, u), v〉dζ(x, v) = −

ˆ
〈τx,expx(v)(f(x, u)), τx,expx(v)(v)〉dζ(x, v)

≤
ˆ
〈f(expx(v), u),−τx,expx(v)(v)〉dζ(x, v) + Lip(f)

ˆ
|v|2dζ(x, v)

=
ˆ
〈f(expx(v), u),−τx,expx(v)(v)〉dζ(x, v) + Lip(f)d2

W (σ, µ),
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where the last equality holds since ζ ∈ exp−1
µ (σ).

Let β : TM → TM defined for every (x, v) ∈ TM by

β(x, v) = (expx(v),−τx,expx(v)(v)).

Then it comes

−
ˆ
〈f(x, u), v〉dζ(x, v) ≤

ˆ
〈f(expx(v), u),−τx,expx(v)(v)〉dζ(x, v) + Lip(f)d2

W (σ, µ)

=
ˆ
〈f(x, u), v〉dβ]ζ(x, v) + Lip(f)d2

W (σ, µ).

Set ζ̃ = β]ζ. Notice that we have

πM]ζ̃ = exp ]ζ = σ, exp ]ζ̃ = πM]ζ = µ,

ˆ
|v|2dζ̃(x, v) = dW (µ, σ)2,

since
∀ (x, v) ∈ TM, πM ◦ β(x, v) = expx(v), exp ◦β(x, v) = x,

and ˆ
|v|2dζ̃(x, v) =

ˆ
| − τx,expx(v)(v)|2dζ(x, v) =

ˆ
|v|2dζ(x, v) = dW (µ, σ)2.

Thus ζ̃ ∈ exp−1
σ (µ), and therefore it follows from Theorem 4.3 that

Dµd
2
W (µ, σ)

(
πµ ◦ f(., u)]µ

)
≤ −2

ˆ
〈f(x, u), v〉dζ(x, v)

≤ 2
ˆ
〈f(x, u), v〉dζ̃(x, v) + 2Lip(f)d2

W (σ, µ)

≤ −Dσd
2
W (µ, σ)

(
πµ ◦ f(., u)]σ

)
+ 2Lip(f)d2

W (σ, µ).

By multiplying by a and taking the infimum over u ∈ U , we get the desired result.
�

Remark 4.4.1. The above result is of fundamental importance to prove the com-
parison principle. Indeed, it will allow us to use the variable doubling technique
without assuming any extra-regularity on the Hamiltonian. Furthermore, the proof
can also be adapted if for example the base space is the Euclidean space RN , rather
than the compact manifold M . The reason is that the squared Wasserstein dis-
tance in P2(RN) is a semiconvave function and its directional derivatives have an
expression similar to (4.12) (see [60, Theorem 7.3.2 and Proposition 7.3.6]).

Proposition 4.3.2. Let O be a subset of a metric space (X, dX), Φ : O → R be
upper semicontinuous, Ψ : O → R be lower semicontinuous such that Ψ ≥ 0, and

Γa = sup
O
{Φ(x)− aΨ(x) },
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with a > 0. Suppose −∞ < lim
a→+∞

Ma < +∞ and let xa ∈ O be chosen such that

lim
a→+∞

(Γa − (Φ(xa)− aΨ(xa))) = 0.

Then the following holds:


(i) lim
a→+∞

aΨ(xa) = 0,
(ii) Ψ(x̂) = 0 and lim

a→+∞
Γa = Φ(x̂) = sup

{Ψ(x)=0}
Φ(x),

whenever x̂ ∈ O is a limit of (xa)a, as a→ +∞.

Proof. The proof is exactly the same as in [3, Proposition 3.7], even though it was
asserted only for Euclidean spaces. We give here below the proof for the sake of
completeness. Let

εa = Γa − (Φ(xa)− aΨ(xa)),

so that lim
a→∞

εa = 0. Since Ψ > 0, Γa decreases as a increases and lim
a→+∞

Γa exists
and is finite by assumption. Furthermore, we have:

Γa
2
≥ Φ(xa)−

a

2 Ψ(xa) ≥ Φ(xa)− aΨ(xa) + a

2 Ψ(xa) = Γa − εa + a

2 Ψ(xa),

which implies that aΨ(xa) ≤ 2 (εa + Γa
2
− Γa), hence lim

a→+∞
aΨ(xa) = 0.

Suppose now an → +∞ and xan → x̂ ∈ O. Then lim
an→+∞

Ψ(xan) = 0 and by lower
semicontinuity Ψ(x̂) = 0. Moreover, since

Φ(xan)− an Ψ(xan) = Γan − εan ≥ sup
{Ψ(x)=0}

Φ(x)− εan ,

and Φ is upper semicontinuous, the result holds. �

Remark 4.4.2. Proposition 4.3.2 is a very general statement. It only requires
assumptions on the topology of the considered space. Furthermore, this result holds
for non locally compact metric spaces.

Theorem 4.4 (Comparison principle). Assume (H) and (H`). Let v, w : [0, T ]×
P2(M) → R be respectively a bounded upper semicontinuous subsolution and a
bounded lower semicontinuous supersolution on [0, T ]× P2(M). Then we have:

sup
[0,T ]×P2(M)

(v − w)+ ≤ sup
{T}×P2(M)

(v − w)+,

where (r)+ = max(r, 0).
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Proof. Let Γ := sup
[0,T ]×P2(M)

(v −w). First, by replacing v by v − sup
{T}×P2(M)

(v −w)+,

which is still a subsolution, it suffices to prove that Γ ≤ 0.
By contradiction, suppose that Γ > 0. Let 0 < α ≤ Γ and let

vα(t, µ) = v(t, µ) + α(t− T ).

vα is still a subsolution of (4.14). Furthermore, we take α small enough so that

Γα := sup
[0,T ]×P2(M)

(vα − w) > 0.

We construct test functions the following way:

ψa(t, s, µ, σ) = vα(t, µ)− w(s, σ)− a

2(d2
W (µ, σ)+|t− s|2).

Since v, w are bounded, v−w is upper semicontinuous and [0, T ]×P2(M) is compact,
then Γa = supψa is reached.
Let (ta, sa, µa, σa) be such that Γa is reached. Without loss of generality, we can
suppose that (ta, sa, µa, σa) converges and lim

a→+∞
Γa exists as a → +∞ (take a sub-

sequence if necessary). We have

lim
a→+∞

(Γa − ψa(ta, sa, µa, σa)) = 0 and −∞ < lim
a→+∞

Γa < +∞.

Therefore, we can apply Proposition 4.3.2 via the correspondences

X = O = [0, T ]2×(P2(M))2 , Φ(x) = vα(t, µ)−w(s, σ), Ψ(x) = 1
2
(
d2
W (µ, σ)+|t− s|2

)
,

and we get 
(i) lim

a→+∞

a

2(d2
W (µa, σa)+|ta − sa|2) = 0,

µa, σa → µ̂ ∈ P2(M), ta, sa → t̂ ∈ [0, T ], as a→∞,
(ii) lim

a→+∞
Γa = ψa(t̂, t̂, µ̂, µ̂) = Γα.

Hence, when a is big enough, we have ta, sa /∈ {T} since vα(t̂, µ̂)−w(t̂, µ̂) > 0. Then
since v is a subsolution and w is a supersolution, we get

−α+a(ta−sa)+H(µa,
a

2Dµd
2
W (µa, σa)) ≥ 0 ≥ a(ta−sa)+H(σa,−

a

2Dσd
2
W (µa, σa)).

Thus we get from Proposition 4.3.1

0 ≤ −α+H(µa,
a

2Dµd
2
W (µa, σa))−H(σa,−

a

2Dσd
2
W (µa, σa)) ≤ −α+aLip(f)(dW (µa, σa))2.

By letting a tend to infinity, we get α ≤ 0, a contradiction. �
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A similar comparison result was obtained in [37, 38] for similar Hamilton Jacobi
equations defined in the Wasserstein space over the Euclidean space. However, it
holds only for uniformly continuous subsolutions and supersolutions. Here, with the
new definition of viscosity, the comparison principle holds for equation (4.14) for
any bounded upper semicontinuous subsolution and bounded lower semicontinuous
supersolution. Before proving existence of the solution for equation (4.14), we need
the following proposition.

Proposition 4.4.1. Let t 7→ Y t0,x0,u
t be a trajectory of (4.2). Let µ, σ ∈ P2(M).

Then, there exists a subsequence, (tn)n ↓ t0 and a vector field b(.) ∈ L2(µ, TM),
such that

b(.) ∈ co {f(., u) : u ∈ U},
where co stands for the closed convex hull of the set of functions f(., u) with u ∈ U ,
and verifies

lim
tn↓t0

(
dW (Y t0,x0,u

tn ]µ, σ)
)2
−
(
dW (µ, σ)

)2

tn − t0
= lim

tn↓t0

(
dW

(
expµ

(
(tn − t0) � b]µ

)
, σ
))2
−
(
dW (µ, σ)

)2

tn − t0

Proof. First, notice that if such a vector field b(.) ∈ L2(µ, TM) exists, then we
have

∣∣∣∣
(
dW (Y t0,x0,u

tn ]µ, σ)
)2
−
(
dW

(
expµ

(
(tn − t0) � b]µ

)
, σ
))2

tn − t0

∣∣∣∣ ≤
dW

(
Y t0,.,u
tn ]µ, expµ((tn − t0) � b)]µ

)
tn − t0

(
dW

(
expµ

(
(tn − t0) � b]µ

)
, σ
)

+ dW

(
Y t0,x0,u
tn ]µ, σ

))
.

Hence it suffices to prove that

lim
tn↓t0

dW

(
Y t0,.,u
tn ]µ, expµ((tn − t0) � b]µ)

)
tn − t0

= 0.

By Nash embedding theorem, we can assume thatM is isometrically embedded into
a Euclidean space (RN , ||.||) with N > 0 big enough. We have

Y t0,x0,u
t = x0 +

ˆ t

t0

f(Y t0,x0,u
s , u(s))ds,

and the quantity

x0 7→
1

t− t0

ˆ t

t0

f(Y t0,x0,u
s , u(s))ds

is uniformly bounded independently of t and x0. Let (tn)n ↓ t0, and let bn(.) be the
sequence of functions defined as
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∀x0 ∈M, bn(x0) := 1
tn − t0

ˆ tn

t0

f(Y t0,x0,u
s , u(s))ds.

The sequence (bn(.))n is uniformly bounded. Furthermore, it is equiLipschitz. Indeed
we have

∀x0, y0 ∈M, ||bn(x0)− bn(y0)|| ≤ 1
tn − t0

ˆ tn

t0

||f(Y t0,x0,u
s , u(s))− f(Y t0,y0,u

s , u(s))||ds

≤ C1Lip(f)d(x0, y0),
where C1 is the constant from Proposition 4.0.1. Hence, by Arzelà–Ascoli Theorem,
there exists a subsequence of (tn)n (not relabelled here) and a function b(.) such that

∀x0 ∈M, bn(x0)→ b(x0), as n tends to infinity.
Moreover, b(.) ∈ L2(µ, TM) since it is the pointwise limit of measurable and uni-
formly bounded functions. On the other hand, there exists (εn) ↓ 0 such that

bn(.) ∈ co
( ⋃
|t0−s|≤εn

{f(Y t0,.,u
s , u(s))}

)
.

Hence
b(.) ∈ co {f(., u) : u ∈ U}.

Consider the curve t 7→ expx0((t− t0)b(x0)). For any x0 ∈M , we have
|| expx0((t− t0)b(x0))− (x0 + (t− t0)b(x0))|| = o(|t− t0|),

since the two curves are smooth and have the same position and velocity at t0. Then,
we get

lim
tn↓t0

1
tn − t0

∣∣∣∣∣∣∣∣Y t0,x0,u
tn − expx0((tn − t0)b(x0))

∣∣∣∣∣∣∣∣ =

lim
tn↓t0

∣∣∣∣∣∣∣∣ 1
tn − t0

ˆ tn

t0

f(Y t0,x0,u
s , u(s))ds− b(x0)

∣∣∣∣∣∣∣∣ = 0.

On the other hand, since Nash embedding is biLipschitz, we get

lim
tn↓t0

1
tn − t0

d
(
Y t0,x0,u
tn , expx0((tn − t0)b(x0))

)
=

lim
tn↓t0

1
tn − t0

∣∣∣∣∣∣∣∣Y t0,x0,u
tn − expx0((tn − t0)b(x0))

∣∣∣∣∣∣∣∣ = 0.

Thus we obtain

lim
tn↓t0

1
(tn − t0)2d

2
W

(
Y t0,.,u
tn ]µ, expµ((tn − t0) � b]µ)

)
≤

lim
tn↓t0

1
(tn − t0)2

ˆ
d2
(
Y t0,x0,u
tn , expx0((tn − t0)b(x0))

)
dµ(x0) = 0,

by dominated convergence, which implies the result. �
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Theorem 4.5. Assume (H), (H`) and (Hco). Then the value function ϑ is the
unique continuous viscosity solution to (4.14).

Proof. First we prove that ϑ is a supersolution. Let φ ∈ T EST 2, such that ϑ− φ
attains a minimum at (t0, µ0) ∈ [0, T )× P2(M).
So there exists, (a, σ) ∈ R− × P2(M) and ψ(.) ∈ C2([0, T ],R) such that

φ(t, µ) = ψ(t) + a d2
W (µ, σ),

and
∀(t, µ) ∈ [0, T )× P2(M), φ(t, µ)− φ(t0, µ0) ≤ ϑ(t, µ)− ϑ(t0, µ0).

Let t 7→ Y t0,x,u
t be a trajectory of (4.2) such that ϑ(t0, µ0) = ϑ(t0 + h, Y t0,.,u

t0+h ]µ) . So
we get for all h ∈ [0, T − t0),

φ(t0 + h, Y t0,.,u
t0+h ]µ0)− φ(t0, µ0) ≤ ϑ(t0 + h, Y t0,.,u

t0+h ]µ0)− ϑ(t0, µ0) ≤ 0.

Thus along a subsequence (hn)n → 0, by dividing by hn and letting hn tend to 0,
we get by Proposition 4.4.1 and Theorem 4.3,

∂tφ+ inf
u∈U

Dµφ
(
πµ ◦ f(., u)]µ0

)
= ∂tφ+ inf

b(.)∈co{f(.,u)}
Dµφ

(
πµ ◦ b]µ0

)
≤ ∂tφ+Dµφ

(
πµ ◦ b]µ0

)
≤ 0,

where the first equality is obtained by Hypothesis (Hco).

To prove that ϑ is a subsolution, let φ ∈ T EST 1, such that ϑ−φ attains a maximum
at (t0, µ0) ∈ [0, T ) × P2(M). So there exists (a, σ) ∈ R+ × P2(M) and ψ(.) ∈
C2([0, T ],R) such that

φ(t, µ) = ψ(t) + a d2
W (µ, σ),

and
∀(t, µ) ∈ [0, T )× P2(M), φ(t, µ)− φ(t0, µ0) ≥ ϑ(t, µ)− ϑ(t0, µ0).

Let t 7→ Y t0,x,u
t be a trajectory that is a solution to the controlled system (4.4) with

constant control u ∈ U . So we get for all h ∈ [0, T − t0),

φ(t0 + h, Y t0,.,u
t0+h ]µ0)− φ(t0, µ0) ≥ ϑ(t0 + h, Y t0,.,u

t0+h ]µ0)− ϑ(t0, µ0) ≥ 0.

On the other hand, by the same reasoning as in Proposition 4.4.1, we get

lim
h↓0

(
dW (Y t0,x0,u

t0+h ]µ, σ)
)2
−
(
dW (µ, σ)

)2

h
= lim

h↓0

(
dW

(
expµ

(
h � (f(., u)]µ)

)
, σ
))2
−
(
dW (µ, σ)

)2

h
.

Therefore, by dividing by h and letting h tend to 0, we get by Theorem 4.3

∂tφ+Dµφ
(
πµ ◦ f(., u)]µ0

)
≥ 0.
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By taking the infimum over u ∈ U , we get the result.

Finally, the final condition of (4.14) is trivially verified by ϑ. Hence, the value
function ϑ is a continuous bounded solution to (4.14) and it is unique by Theorem
4.4. �

4.5 Appendices

4.5.1 Disintegration theorem
We recall here the disintegration theorem. For more details, we refer to [60, Theorem
5.3.1].

Theorem 4.6. Let X, Y be two Polish spaces (i.e. complete and separable metric
spaces), µ ∈ P(X), let r : X → Y be a Borel map and let ν = r]µ ∈ P(Y ).
Then, there exists a ν−a.e. uniquely determined Borel family of probability measures
{µy}y∈Y ⊂ P(X) such that:

µy(X \ r−1(y)) = 0, for ν−a.e. y ∈ Y,

and
ˆ
X

f(x) dµ(x) =
ˆ
Y

 ˆ
r−1(y)

f(x) dµy(x)
 dν(y), for every Borel map f : X → [0,+∞].

4.5.2 Riemannian manifolds
We recall some standard notions of Riemannian geometry. Classical references are
for example [105, 106]. We consider a connected differentiable manifold M with
empty boundary endowed with a Riemannian metric 〈., .〉 and we assume that
(M, 〈., .〉) is a complete Riemaniann manifold. Let d(., .) be the Riemannian dis-
tance on (M, 〈., .〉). The metric space (M,d) is a complete space and its topology is
equivalent to the topology of the manifold M . For any x ∈ M , we denote by TxM
the tangent space of M at x, by TM := ∪x∈M {x} × TxM the tangent bundle and
by πM : TM → M the canonical projection. Let ∇ be the Levi-Civita connection
associated to (M, 〈., .〉). A vector field V : M → TM is a mapping such that

πM ◦ V (x) = x, ∀x ∈M.

Let α : [a, b]→ M be a smooth curve. The connection ∇ induces a linear isometry
between Tα(a)M and Tα(t)M , for all t ∈ [a, b]. More precisely, for all v ∈ Tα(a), there
exists a unique vector field V along α, satisfying

∇α̇(t)V (α(t)) = 0, ∀t ∈ [a, b], and V (α(a)) = v.
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The resulting isometry, called the parallel transport along α from α(a) to α(b), and
denoted by ταα(a),α(b) is defined by

ταα(a),α(b)(v) = V (α(b)), ∀ v ∈ Tα(a)M.

There holds that ταα(b1),α(b2) ◦ ταα(a),α(b1) = ταα(a),α(b2) and (ταα(a),α(b))−1 = ταα(b),α(a). For
convenience, we will drop the superscript α, whenever it is clear from the context
which curve α is used.
Let exp : TM → M be the exponential map. For every x ∈ M , the function exp
maps straight lines of TxM , x ∈ M , passing through 0x ∈ TxM to geodesics of M
passing through x. Since (M, 〈., .〉) is supposed to be complete, it is a consequence of
Hopf-Rinow theorem, that the exponential map is defined on all the tangent bundle.
However it may not be a diffeomorphism.
The tangent bundle TM is itself a complete Riemannian manifold when endowed
with the Sasaki metric [97]. The Riemannian distance dTM on TM associated with
the Sasaki metric is defined by

∀(u, v) ∈ TM × TM, d2
TM(u, v) := inf { (length(α))2+|ταπM (u),πM (v)(u)− v|2 },

where the infimum is taken over all smooth curves α : [0, 1]→M connecting πM(u)
and πM(v) and its length is defined by

length(α) :=
ˆ 1

0

√
〈α̇(t), α̇(t)〉 dt =

ˆ 1

0
|α̇(t)| dt,

where |.| is the norm associated to the Riemannian metric 〈., .〉 on the tangent bundle
TM .



Chapter 5

Conclusions and future directions

Let us conclude this work by summarizing the main contributions that have been
displayed in this thesis and by mentioning some future directions that we think are
interesting to investigate.

Conclusions
In Chapter 2, we studied a Hamilton Jacobi Bellman equation associated to a strat-
ified domain Mayer optimal control problem. We introduced a viscosity notion
adapted to the stratification where test functions are continuously differentiable on
the closure of each subdomain of the stratification. With this notion of viscosity,
we proved that the value function is the unique viscosity solution of the discon-
tinuous Hamilton Jacobi Bellman equation. The proof is based on the dynamic
programming principle verified by the value function and on the invariance prop-
erties proved in this discontinuous setting. Furthermore, the invariance properties
give us a comparison principle valid for any upper semicontinuous subsolution and
any lower semicontinuous supersolution. Moreover, we proved some stability results
in the presence of perturbations on the Hamiltonians on each domain. Finally, the
comparison principle combined with the new notion of viscosity allowed us to prove
a general convergence result for monotone numerical schemes approximating the
Hamilton Jacobi Bellman equation in this setting, which generalizes the classical
result due to Barles and Souganidis [47].

The invariance properties were proven by considering the essential dynamics of
the stratified setting first introduced by Barnard and Wolenski [41]. Barnard and
Wolenski along with the work of Rao and Zidani [18] provided us with the intuition
to solve this problem. The proof of the strong invariance property given in [41]
needed further investigation, which was the limiting factor in [18] to prove a strong
comparison principle similar to the one we provided here. We improved on the work
of Barnard and Wolenski by assuming further that the essential dynamics are lower
semicontinuous, an assumption that was not present in their paper. Furthermore,
we introduced a different notion of viscosity than the one considered by Rao and
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Zidani which turned out to be more adequate in our setting. Other key assumptions
that play an important part in this setting are proximal smoothness and relative
wedgeness hypotheses on the closure of the domains. These hypotheses, though they
are necessary for technical reasons, can be sharpened more. We will discuss these
hypotheses through the framework of Chapter 3

Chapter 3 of this work was devoted to develop a first order viscosity theory on
proper CAT(0) spaces. CAT(0) spaces are geodesic spaces with upper curvature
bound equal to 0 in the sense of Alexandrov. CAT(0) spaces enjoy a rigid structure
that allows for a first order calculus to be possible on them. In particular, a notion
of tangent cone is well defined at every point and it has a structure resembling that
of a Hilbert space. Furthermore, a notion of differential exists for Lipschitz and DC
functions. We defined the notion of viscosity using test functions that are Lipschitz
and DC. More precisely, we test subsolutions with Lipschitz semiconvex functions
and we test supersolutions with Lipschitz semiconcave functions. Particular cases
of Lipschitz and DC functions are the squared distance function and the distance
function to a closed convex subset. Under mild assumptions on the Hamiltonian
considered, we proved the comparison principle using the variable doubling technique
in the exact same manner as in the classical theory of viscosity. Furthermore, we
derived existence of the viscosity solution using Perron’s method in a similar way
as in the classical theory. Finally, we showed through several examples that this
framework not only extends to a wide class of metric spaces useful in several real-
world applications, but it also applies to the Euclidean space and manifolds of
nonpositive sectional curvature.

These results are, to our point of view, are the tip of an iceberg consisting of a theory
of viscosity in geodesic spaces of one curvature bound in the sense of Alexandrov. In
this chapter, we only gave some elements of this idea for spaces with upper bound
curvature equal to 0 in the sense of Alexandrov. Moreover, in the last chapter,
we treated a particular case of a geodesic space with the flavor of lower curvature
bound in the sense of Alexandrov, which is the Wasserstein space over a compact
Riemannian manifold.

In Chapter 4, we studied well posedness of a Hamilton Jacobi Bellman equation
coming from an optimal control problem defined in the Wasserstein space over a
compact Riemannian manifold. We started by exploiting the formal Riemannian
structure that the Wasserstein space enjoys. In particular, the continuity equation
and the space of gradient vector fields allow to define the optimal control problem on
the Wasserstein space. Furthemore, we explained the intricacies between the formal
Riemannian structure and the the “2-uniform structure” of the Wasserstein space,
which can be seen as a generalization of the lower curvature bound in the sense of
Alexandrov. In particular, we explained that the tangent cone in the sense of metric
geometry is well defined and the space of gradient vector fields is always a subset
of the tangent cone. Furthermore, we explained that metric geometry tools clarify
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where the formal Riemannian structure is a good approximation of the Wasserstein
space and where it degenerates. We explained that this distinction is important since
we wanted to define a notion of viscosity that is robust enough so that viscosity-type
techniques could be transposed to Wasserstein spaces.

We defined the value function associated to the optimal control problem and we
proved that it is Lipschitz continuous under standard assumptions on the dynamics
of the system. Furthermore, we proved that the value function verifies a dynamic
programming principle which allows us to assert that it is a viscosity solution in a
suitable viscosity sense. Finally, we defined the notion of viscosity using Lipschitz
and DC function. In particular, we test subsolutions with functions that are Lip-
schitz and semiconcave and we test supersolutions with Lipschitz and semiconvex
functions. The uniqueness of the solution is obtained thanks to a comparison princi-
ple that we proved to hold for any upper semicontinuous subsolution and any lower
smeicontinuous supersolution. We believe that the example treated in this chapter,
is a simple example for the notion of viscosity that we introduced and it can be
applied to a more general class of Hamilton Jacobi equations posed in Wasserstein
spaces.

Future directions
Let us mention here some open questions that can be seen as a natural continuation
of the work done in this thesis.

• Extension of the viscosity notion to CAT(κ) spaces. The proofs given in
Chapter 3 for viscosity theory on proper CAT(0) spaces are all local in nature.
Hence, they could be extended, in a rather straightforward manner, to any
proper CAT(κ) space for any κ ∈ R. Interesting examples of proper CAT(κ)
spaces are ramified spaces where Camilli, Marchi and Schieborn studied the
Eikonal equation in them [21] and proximally smooth subsets of Euclidean
spaces or smooth manifolds with curvature bounded from above, as proven by
Lytchak in [107]. Furthermore, in Chapter 2, we assumed proximal smoothness
for the closure of the domains of the stratification. It would be interesting to
investigate whether the results obtained in Chapter 2 could be otained using
purely the viscosity notion introduced in the setting of Chapter 3. Moreover,
we conjecture that viscosity techniques would not need the relative wedgeness
assumption. Indeed, although it was necessary for technical reasons related to
nonsmooth analysis tools, we could not find an example of a proximally smooth
set that does not automatically verify the relative wedgeness assumption. The
relative wedgeness assumption seems to compensate for the lack of a general
optimal control theory in CAT(κ) spaces.

• An optimal control theory in CAT(κ) spaces. One of the most challeng-
ing questions that has not been addressed in these pages concerns the optimal
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control interpretation of the examples of Hamilton Jacobi equations given in
Chapter 3. A first step in this direction would be to develop a theory of con-
trolled gradient flows in CAT(0) spaces. A recent preprint by Conforti, Kraaij
and Tonon [108] investigates a general comparison principle for Hamilton Ja-
cobi equations associated to a linearly controlled gradient flow system posed
in a general metric space. The author conjectures that since CAT(κ) spaces
enjoy more structure than a general metric space, one might be able to recover
stronger results.

• Extension of the viscosity notion in P(M) to more general Hamiltoni-
ans. In Chapter 4, we introduced a notion of viscosity in the Wasserstein space
over a compact Riemannian manifold to study well posedness of a Hamilton
Jacobi Bellman equation associated to a simple model of a multi-agent optimal
control problem where the non local interactions between the agents are not
considered. The extension to more general Hamilton Jacobi equations coming
from multi-agent optimal control problems is the natural next step of the work
presented here. Furthermore, an interesting question would be to compare the
various notions of viscosity that exist in the literature with the current one
proposed in this manuscript. Moreover, it would be interesting to apply the
notion given here to the first order master equation coming from mean field
games and to compare it to the results obtained by Cardaliaguet, Delarue,
Lasry and Lions in [39].
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Title: Viscosity theory of first order Hamilton Jacobi equations in some metric spaces.
Key words: Optimal control, Hamilton Jacobi equations, Discontinuous Hamiltonians, CAT(0) spaces, Networks,
Multi-agent systems, Wasserstein spaces, Semiconvex functions, Semiconcave functions.

Abstract: In the first part of this thesis, we study a discontinuous first order Hamilton Jacobi Bellman equation defined
on a stratification of RN . The latter is a finite and disjoint union of smooth submanifolds of RN called the subdomains
of RN . On each subdomain, a continuous Hamiltonian is defined on it, However the global Hamiltonian in RN presents
discontinuities once one goes from one subdomain to the other. We use nonsmooth analysis techniques to prove that the
value function is the unique viscosity solution to the discontinuous Hamilton Jacobi Bellman equation in this setting.
Moreover, we prove some stability results in the presence of perturbations on the discontinuous Hamiltonian. Finally, by
virtue of the comparison principle, we prove a general convergence result of monotone numerical schemes approximating
this problem.

The second part of this thesis is concerned with defining a novel notion of viscosity for first order Hamilton Jacobi
equations defined in proper CAT(0) spaces. We exploit the additional structure that these spaces enjoy to study stationary
and time-dependent first order Hamilton-Jacobi equations in them. In particular, we want to recover the main features
of viscosity theory: the comparison principle and Perron’s method. We define the notion of viscosity using test functions
that are Lipschitz and can be represented as a difference of two semiconvex function. We show that this new notion
of viscosity coincides with the classical one in RN by studying some classical examples of Hamilton Jacobi equations.
Furthermore, we prove existence and uniqueness of the solution of Eikonal type equations posed in more general CAT(0)
spaces.

In the third part of this thesis, we study a Mayer optimal control problem on the space of Borel probability measures
over a compact Riemannian manifold M . We define the notion of viscosity in this space in a similar manner as in the
previous part by taking test functions that are Lipschitz and can be written as a difference of two semiconvex functions.
With this choice of test functions, we extend the notion of viscosity to Hamilton Jacobi Bellman equations in Wasserstein
spaces and we establish that the value function is the unique viscosity solution of a Hamilton Jacobi Bellman equation
in the Wasserstein space over M .

Titre : Théorie de viscosité des équations de Hamilton Jacobi du premier ordre sur certains espaces métriques.
Mots clés : Commande optimale, Équations de Hamilton Jacobi, Hamiltoniens discontinus, Espaces CAT(0), Networks,
Systèmes multi-agents, Espaces de Wasserstein, Fonctions semiconvexes, fonctions semiconcaves.

Résumé : La première partie de cette thèse est consacrée à l’étude d’une équation de Hamilton Jacobi Bellman discon-
tinue, définie sur une stratification de RN . Cette dernière est le résultat d’une union d’une collection finie de sous-variétés
lisses et disjointes de RN , que l’on nomme les sous-domaines. Sur chaque sous-domaine, un Hamiltonien continu y est
défini. Cependant, le Hamiltonien global sur RN présente des discontinuités lorsque l’on passe d’un sous-domaine à
l’autre. On utilise les techniques de l’analyse non lisse pour montrer que la fonction valeur est l’unique solution de
viscosité de l’équation de Hamilton Jacobi Bellman définie dans ce chapitre. De plus, on prouve quelques résultats de
stabilité en présence de perturbations sur le Hamiltonien discontinu. Finalement, en vertu du principe de comparaison,
on montre un résultat de convergence général pour les schémas numériques monotones qui approchent ce problème.

La deuxième partie de cette thèse est consacrée au dévelopement d’une nouvelle notion de viscosité pour les équations
de Hamilton Jacobi du premier ordre définies sur les espaces CAT(0) propres. On exploite la strucutre de ces espaces
pour étudier les equations de Hamilton Jacobi du premier ordre stationnaires et dépendantes du temps. En particulier,
le but du chapitre est de retrouver les principaux résultats de la théorie de la viscosité : le principe de comparaison et la
méthode de Perron. On définit la notion de viscosité en utilisant des fonctions test qui sont Lipschitz et qui peuvent être
représentées comme une différence de deux fonctions semiconvexes. On montre que cette notion de viscosité coïncide
avec la notion classique dévelopée sur RN en étudiant quelques exemples d’équations classiques. De surcroît, on prouve
l’existence et l’unicité de la solution de certaines équations du type Eikonal posées sur des espaces CAT(0) plus généraux.

La troisième partie de la thèse se focalise sur l’étude d’un problème de commande optimale de Mayer sur l’espace des
mesures Boréliennes de probabilité sur une variété compacte M . On définit la notion de viscosité sur cet espaces de la
même manière que dans la deuxième partie de la thèse en considérant des fonctions test qui sont Lipschitz et qui peuvent
être représentées par une différence de deux fonctions semiconvexes. Avec ce choix de fonctions test, on étend la notion
de viscosité aux équations de Hamilton Jacobi Bellman définies sur l’espace de Wasserstein et on établit que la fonction
valeur associée au problème de commande optimale et l’unique solution de viscosité sur l’espace de Wasserstein sur M .
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